Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous nitrogen pollution could be halved

13.05.2014

The most important fertilizer for producing food is, at the same time, one of the most important risks for human health: nitrogen.

Chemical compounds containing reactive nitrogen are major drivers of air and water pollution worldwide, and hence of diseases like asthma or cancer.

If no action is taken, nitrogen pollution could rise by 20 percent by 2050 in a middle-of-the-road scenario, according to a study now published by scientists of the Potsdam Institute for Climate Impact Research. Ambitious mitigation efforts, however, could decrease the pollution by 50 percent. The analysis is the very first to quantify this.

“Nitrogen is an irreplaceable nutrient and a true life-saver as it helps agriculture to feed a growing world population – but it is unfortunately also a dangerous pollutant,” says Benjamin Bodirsky, lead-author of the study.

In the different forms it can take through chemical reactions, it massively contributes to respirable dust, leads to the formation of aggressive ground-level ozone, and destabilizes water ecosystems. Damages in Europe alone have been estimated at around 1-4 percent of economic output, worth billions of Euro.

About half of these nitrogen pollution damages are from agriculture. This is why the scientists ran extensive computer simulations to explore the effects of different mitigation measures.

***Both farmers and consumers would have to participate in mitigation***

“It became clear that without mitigation the global situation may markedly deteriorate as the global food demand grows,” says Bodirsky, who is also affiliated to the International Center for Tropical Agriculture, Colombia (CIAT). “A package of mitigation actions can reverse this trend, yet the risk remains that nitrogen pollution still exceeds safe environmental thresholds.”

Only combined mitigation efforts both in food production and consumption could substantially reduce the risks, the study shows. Currently, every second ton of nitrogen put on the fields is not taken up by the crops but blown away by the wind, washed out by rain or decomposed by microorganisms.

To reduce losses and prevent pollution, farmers can more carefully target fertilizer application to plants’ needs, using soil measurements. Moreover, they should aim at efficiently recycling animal dung to fertilize the plants. “Mitigation costs are currently many times lower than damage costs,” says co-author Alexander Popp.

“For consumers in developed countries, halving food waste, meat consumption and related feed use would not only benefit their health and their wallet,” Popp adds. “Both changes would also increase the overall resource efficiency of food production and reduce pollution.”

***“Health effects of nitrogen pollution more important than climate effects”***

“The nitrogen cycle is interwoven with the climate system in various ways,” Hermann Lotze-Campen points out, co-author of the study and co-chair of PIK’s research domain Climate Impacts and Vulnerabilities. Nitrous oxide, or laughing gas, on the one hand is one of the major greenhouse gases. On the other hand, nitrogen containing aerosols scatter light and thereby cool the climate.

And as fertilizing nutrient, nitrogen enhances the growth of forests which binds CO2. “Currently the health effects of nitrogen pollution are clearly more important, because the different climate effects largely cancel out,” says Lotze-Campen. “But this may change – hence limiting nitrogen would have the double benefit of helping our health today and avoiding climate risks in the future.”

Article: Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M. (2014): Reactive nitrogen requirements to feed the world in 2050 and potentials to mitigate nitrogen pollution. Nature Communications [DOI:10.1038/ncomms4858]

Weblink to Nature Communications where the article will be published: http://www.nature.com/naturecommunications

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | PIK Potsdam

Further reports about: Climate agriculture farmers microorganisms nitrogen nutrient reactions

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>