Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dairy Farmer Finds Unusual Forage Grass

16.03.2011
A U.S. Department of Agriculture (USDA) grass breeder has rediscovered a forage grass that seems just right for today's intensive rotational grazing.

A farmer's report of an unusual forage grass led Michael Casler, an Agricultural Research Service (ARS) geneticist at the agency's U.S. Dairy Forage Research Center in Madison, Wis., to identify the grass as meadow fescue. Meadow fescue has been long forgotten, although it was popular after being introduced about 50 to 60 years before tall fescue.

ARS is USDA's principal intramural scientific research agency.

Casler has developed a new variety of meadow fescue called Hidden Valley, and its seed is being grown for future release.

Non-toxic fungi called endophytes live inside meadow fescue, helping it survive heat, drought and pests. Unlike the toxic endophytes that inhabit many commercial varieties of tall fescue and ryegrass, meadow fescue does not poison livestock.

Charles Opitz found the grass growing in the deep shade of a remnant oak savannah on his dairy farm near Mineral Point, Wis. He reported that the cows love it and produce more milk when they eat it. Casler used DNA markers to identify Opitz's find.

Meadow fescue is very winter-hardy and persistent, having survived decades of farming. It emerged from oak savannah refuges to dominate many pastures in the Midwest's driftless region, named for its lack of glacial drift, the material left behind by retreating continental glaciers.

Casler and his colleagues have since found the plant on more than 300 farms in the driftless region of Wisconsin, Iowa and Minnesota. Geoffrey Brink, an ARS agronomist working with Casler, discovered that meadow fescue is 4 to 7 percent more digestible than other cool-season grasses dominant in the United States.

In another study, meadow fescue had a nutritional forage quality advantage over tall fescue and orchardgrass that may compensate for its slightly lower annual yield further north, as reported in the Agronomy Journal. Also, the yield gap begins to close with the frequent harvesting involved in intensive grazing.

Read more about the research in the March 2011issue of Agricultural Research magazine.

Don Comis | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research DNA marker DNA markers Ryegrass endophytes farmer grass poison livestock

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>