Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crop Sensors Outdo Farmers At Choosing Nitrogen Rates

Choosing how much nitrogen (N) to put on corn fields isn’t something farmers take lightly. Many factors go into the decision, including past experiences, the timing of application, yield goals, and results from soil tests.

Nevertheless, crop sensors can select N rates for corn that outperform those chosen by farmers, according to more than 50 on-farm demonstration projects conducted in Missouri from 2004 to 2008. Compared to producers’ N rates, sensor-selected rates increased yield by almost 2 bushels per acre, on average, while reducing by 25% the amount of excess N that was applied to fields but not removed in grain.

As concerns about N pollution continue to mount, the sensors offer a way to cut fertilizer inputs without hurting yield or profits. “The most important thing, I think, is that we were able to make progress on both fronts: The technology slightly improved production and slightly improved environmental outcome,” says the study’s leader, Peter Scharf, a University of Missouri extension agronomist. “There has been talk about win-win, but really there have not been a lot of approaches that have actually [achieved] that.”

Funded by the USDA-NRCS Conservation Innovation Grants program, the Missouri DNR Nonpoint Source Pollution Control program, and the USEPA Special Grants program, the study appears in the November-December issue of Agronomy Journal.

Scharf explains that although optimal N rates can vary substantially within and between fields, most U.S. corn growers still apply the same rates to entire fields or even entire farms. Many farmers in Missouri and elsewhere also spread N fertilizer months before planting, often the November before.

As fertilizer and seed costs keep climbing, however, corn producers are feeling financial pressure to apply N more precisely—in amounts that satisfy crop requirements but don’t exceed them. To help farmers with this, in 1997 Scharf began studying methods for predicting where to put more N in fields and where to put less before sowing crops, since that’s the system most people use. But he and his colleagues eventually turned to crop sensors, employed after plants start growing, as a more accurate means to diagnose N deficiency and sufficiency.

The sensors take advantage of what farmers know already from experience and common sense, Scharf says: Crops with enough N are darker green and taller, while N-deficient crops are lighter and shorter. After developing a technique for translating sensor output into a suitable N rate within a few seconds—work that was published in 2009—Scharf and his collaborators began taking the technology to farms.

Fifty five demonstrations were eventually conducted across a broad swath of Missouri’s corn-growing region. In most cases, two or three sensors were attached to N applicators already owned by farmers or their service providers, and then used to side-dress N at variable rates to corn in growth stages ranging from V6 and V16. At the same time, fixed N rates chosen by farmers were applied in other areas, allowing comparison of the two techniques.

An average of 14 pounds/acre less N was applied when sensors chose the rates, the researchers found, without affecting yields. In fact, during the exceptionally wet spring of 2008, sensor use actually boosted grain yield by 8 bushels/acre, on average, over what producer rates achieved—a significant bump that brought the overall yield gain with the sensors to 2 bushels/acre over all 55 fields.

Scharf believes yield increased significantly in 2008 because the sensors actually chose higher N rates than farmers did that year, better compensating for fertilizer lost through heavy rainfall. And this yield bump, coupled with an overall reduction in N fertilizer from 2004-2007, ended up increasing partial profit by an average of $17/acre across all farms.

Despite the sensors’ benefits, however, “the adoption numbers are still quite small,” Scharf says. Complete systems currently range in price from $10,500 to $16,500, and learning to use them involves time and expense, as well. Still, these aren’t the main hurdles to wider adoption, he adds.

The bigger one is getting farmers to side-dress N during the growing season, rather than fertilizing in spring before planting or even the fall before.

The unusually heavy rains of the past four years may change that. Because applying N months in advance gives it more time to leach and run off, many farmers have lost loads of it—and, therefore, money and yield—in recent rain-soaked years. That leaves one option: Applying the nutrient during the growing season.

“If this weather keeps up, I think we’ll see more people going toward in-season N application,” he says. “And that will be a big obstacle out of the way to using the sensors.”

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit:

The American Society of Agronomy (ASA), is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

James Giese | Newswise Science News
Further information:

Further reports about: Agronomy Farmers Branch N deficiency N fertilizer Sensors crop grants growing season heavy rain nitrogen

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>