Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop Sensors Outdo Farmers At Choosing Nitrogen Rates

02.11.2011
Choosing how much nitrogen (N) to put on corn fields isn’t something farmers take lightly. Many factors go into the decision, including past experiences, the timing of application, yield goals, and results from soil tests.

Nevertheless, crop sensors can select N rates for corn that outperform those chosen by farmers, according to more than 50 on-farm demonstration projects conducted in Missouri from 2004 to 2008. Compared to producers’ N rates, sensor-selected rates increased yield by almost 2 bushels per acre, on average, while reducing by 25% the amount of excess N that was applied to fields but not removed in grain.

As concerns about N pollution continue to mount, the sensors offer a way to cut fertilizer inputs without hurting yield or profits. “The most important thing, I think, is that we were able to make progress on both fronts: The technology slightly improved production and slightly improved environmental outcome,” says the study’s leader, Peter Scharf, a University of Missouri extension agronomist. “There has been talk about win-win, but really there have not been a lot of approaches that have actually [achieved] that.”

Funded by the USDA-NRCS Conservation Innovation Grants program, the Missouri DNR Nonpoint Source Pollution Control program, and the USEPA Special Grants program, the study appears in the November-December issue of Agronomy Journal.

Scharf explains that although optimal N rates can vary substantially within and between fields, most U.S. corn growers still apply the same rates to entire fields or even entire farms. Many farmers in Missouri and elsewhere also spread N fertilizer months before planting, often the November before.

As fertilizer and seed costs keep climbing, however, corn producers are feeling financial pressure to apply N more precisely—in amounts that satisfy crop requirements but don’t exceed them. To help farmers with this, in 1997 Scharf began studying methods for predicting where to put more N in fields and where to put less before sowing crops, since that’s the system most people use. But he and his colleagues eventually turned to crop sensors, employed after plants start growing, as a more accurate means to diagnose N deficiency and sufficiency.

The sensors take advantage of what farmers know already from experience and common sense, Scharf says: Crops with enough N are darker green and taller, while N-deficient crops are lighter and shorter. After developing a technique for translating sensor output into a suitable N rate within a few seconds—work that was published in 2009—Scharf and his collaborators began taking the technology to farms.

Fifty five demonstrations were eventually conducted across a broad swath of Missouri’s corn-growing region. In most cases, two or three sensors were attached to N applicators already owned by farmers or their service providers, and then used to side-dress N at variable rates to corn in growth stages ranging from V6 and V16. At the same time, fixed N rates chosen by farmers were applied in other areas, allowing comparison of the two techniques.

An average of 14 pounds/acre less N was applied when sensors chose the rates, the researchers found, without affecting yields. In fact, during the exceptionally wet spring of 2008, sensor use actually boosted grain yield by 8 bushels/acre, on average, over what producer rates achieved—a significant bump that brought the overall yield gain with the sensors to 2 bushels/acre over all 55 fields.

Scharf believes yield increased significantly in 2008 because the sensors actually chose higher N rates than farmers did that year, better compensating for fertilizer lost through heavy rainfall. And this yield bump, coupled with an overall reduction in N fertilizer from 2004-2007, ended up increasing partial profit by an average of $17/acre across all farms.

Despite the sensors’ benefits, however, “the adoption numbers are still quite small,” Scharf says. Complete systems currently range in price from $10,500 to $16,500, and learning to use them involves time and expense, as well. Still, these aren’t the main hurdles to wider adoption, he adds.

The bigger one is getting farmers to side-dress N during the growing season, rather than fertilizing in spring before planting or even the fall before.

The unusually heavy rains of the past four years may change that. Because applying N months in advance gives it more time to leach and run off, many farmers have lost loads of it—and, therefore, money and yield—in recent rain-soaked years. That leaves one option: Applying the nutrient during the growing season.

“If this weather keeps up, I think we’ll see more people going toward in-season N application,” he says. “And that will be a big obstacle out of the way to using the sensors.”

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: www.agronomy.org/publications/aj

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

James Giese | Newswise Science News
Further information:
http://www.sciencesocieties.org
http://www.agronomy.org

Further reports about: Agronomy Farmers Branch N deficiency N fertilizer Sensors crop grants growing season heavy rain nitrogen

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>