Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop achilles' heel costs farmers 10 percent of potential yield

24.01.2017

Scientists assumed leaves at the top of a plant would be the best at turning higher levels of light into carbohydrates--through the process of photosynthesis -- while the lower shaded leaves would be better at processing the low light levels that penetrate the plant's canopy of leaves. Turns out that in two of our most productive crops, these shaded leaves are less efficient than the top leaves, limiting yield.

These findings, published in the Journal of Experimental Botany, could help scientists further boost the yields of corn and Miscanthus, as well as other C4 crops that have evolved to photosynthesize more efficiently than C3 plants such as¬ wheat and rice.


Compared to top leaves, lower leaves of C4 crops such as corn underperform, costing farmers about 10 percent of potential yield.

Credit: Don Hamerman/Carl R. Woese Institute for Genomic Biology

"The wild ancestors of C4 crops are thought to have grown as individuals in open habitats where the number of leaves that they produced would have been limited by water and nitrogen and most leaves would be exposed to full sunlight" said principal investigator Steve Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the University of Illinois.

"Today we grow these crops in ever denser stands, and provide them with nitrogen and water so that they can produce many more layers of leaves. But as a result, the proportion of leaves that are shaded has increased, and the production of grain will depend more and more on the contribution of this increasing proportion of shaded leaves. So how do the Maseratis of photosynthesis, C4 crops, do when they are on a meager meager fuel ration in the shade?"

Not well, according to this paper: when top and bottom leaves are placed in the same low light, the lower canopy leaves showed lower rates of photosynthesis. Shaded corn leaves are 15 percent less efficient than top leaves--and worse, lower leaves are 30 percent less efficient than the top leaves of Miscanthus, a perennial bioenergy crop that is 60 percent more productive than corn in Illinois.

Considering the crop as a whole, this loss of efficiency in lower leaves may costs farmers about 10 percent of potential yield--a cost that will increase as planting density increases. This 'Achilles' heel' likely applies to other C4 relatives, such as sugarcane and sorghum.

"What's interesting is that we saw this loss in efficiency in the lower canopy was not due to the leaf senescing and dying off--we would have expected that," said first author Charles Pignon, a doctoral candidate in the crop sciences and at the Carl R. Woese Institute for Genomic Biology. "The leaves were still perfectly healthy when we were looking at them; they were even darker. In the article, we show through experiments that this was not caused by age."

"Next, it will be important to find out why this loss in efficiency occurs and if there's any way that we can fix it, since overcoming this and gaining a 10 percent increase in production would be very significant," Pignon said.

###

The paper "Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops" was published in Journal of Experimental Botany . Co-authors also include Deepak Jaiswal and Justin McGrath, a postdoctoral researcher at the University of Illinois.

This work was supported by the Energy Biosciences Institute (EBI). The EBI is a public-private collaboration supported from BP in which bioscience and biological techniques are applied to help solve the global energy challenge. For more information, visit http://www.energybiosciencesinstitute.org/.

Media Contact

Claire Benjamin
claire@illinois.edu
217-244-0941

 @IGBIllinois

http://www.igb.uiuc.edu 

Claire Benjamin | EurekAlert!

Further reports about: Genomic Biology Photosynthesis canopy crop nitrogen

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Kidney tumor: Genetic trigger discovered

19.06.2018 | Life Sciences

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>