Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crabgrass' secret: The despised weed makes herbicide to kill neighboring plants

27.06.2013
Contrary to popular belief, crabgrass does not thrive in lawns, gardens and farm fields by simply crowding out other plants. A new study in ACS' Journal of Agricultural and Food Chemistry has found that the much-despised weed actually produces its own herbicides that kill nearby plants.

Chui-Hua Kong and colleagues point out that crabgrass is not only a headache for lawns and home gardens, but also a major cause of crop loss on farms. Scientists long suspected, but had a hard time proving, that the weed thrived by allelopathy. From the Greek "allelo-," meaning "other," and "-pathy," meaning "suffering," allelopathy occurs when one plant restricts the growth of another by releasing toxins. They set out to determine if crabgrass has this oppressive ability.

Kong's team isolated three chemicals from crabgrass that affect the microbial communities in nearby soil and did indeed inhibit the growth of staple crops wheat, corn and soybeans. "The chemical-specific changes in [the] soil microbial community generated a negative feedback on crop growth," the scientists said, noting that the chemicals also would have a direct toxic effect on other plants.

The authors acknowledge funding from the National Natural Science Foundation of China.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>