Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn Yield Prediction Model Uses Simple Measurements at a Specific Growth Stage

04.07.2013
The ability to predict corn yields would benefit farmers as they plan the sale of their crops and biofuel industries as they plan their operations.

A new study published in the July-August issue of Agronomy Journal describes a robust model that uses easily obtained measurements, such as plant morphology and precipitation, collected specifically at the silking growth stage of the plant. The new model could help both growers and industry maximize their profits and efficiency.


Photo courtesy of Spyridon Mourtzinis.
Measuring the stem diameter of corn crops.

Forecasting crop yield can be extremely useful for farmers. If they have an idea of the amount of yield they can expect, they can contract their corn prior to harvest, often securing a more competitive price than if they were to wait until after harvest. Likewise, industry can benefit from yield predictions by better planning the logistics of their business. But dependable forecasts can be difficult to find.

Several methods of predicting and modeling crop yields have been used in the past with varying success. Statistical models often don’t take into account characteristics of the plants, the weather, or the management practices limiting their usefulness. Some models are based on information from just a single year or location.

“When you develop a model using single location or year data, it will have limited practical applications,” explains Spyridon Mourtzinis, lead author of the study. “You don’t include variability from multiple environments.”

The new study from Mourtzinis and his co-authors from Auburn University found a more robust model for predicting both corn grain and stover yield. The model uses equations calculated with information about nitrogen fertilization rates, precipitation, and plant morphology, such as plant height, stem diameter, height of the first ear, number of forming ears, and plant population.

“Previous attempts were mainly looking at weather factors,” says Francisco Arriaga, co-author of the study and now an assistant professor at the University of Wisconsin-Madison. “This approach has other factors included in the model, and that is an important strength.”

The timing of the measurements is also an important aspect of the model. Mourtzinis took weekly measurements from over 100 plots throughout the growing season to find the best window during which to collect data to be used in the equations. The time-consuming work paid off.

“We looked at all the vegetative states to see which one was best, and it turned out to be the R1 growth stage,” explains Arriaga. “Other models tried to take measurements earlier, but that may be why they had poor results. Things change as the season goes by, and the stage we found was the critical one.”

The R1 or silking growth stage, when silks are first visible outside the husks, is about two to two and half months before harvest. This model, then, would provide predictions early enough to affect crop prices and to allow industries to plan their operations. While even earlier predictions might be possible, they would depend on better forecasting of weather, which can greatly affect yields. Weather changes significantly throughout the growing season, and current forecasts are not dependable.

Another reason that the new model is robust is because data was collected at two different sites in Alabama over three years. The equations used in the current model, then, translated over six sets of data suggesting that it could be used in a variety of environments. Whether that is true is a goal of future experiments.

“It would be interesting to test the equations across a lot more environments now that we know which growth stage to target,” says Arriaga.

Future studies will also test the model with other corn hybrids and management practices. As more data is collected from a variety of environments and growing conditions, the authors are hopeful that the model will continue to be an accurate predictor of corn yield.

“We need to be open-minded,” says Mourtzinis. “The equations might change a bit when we get more data from more environments, but I think we can build on the current model.”

View the abstract at http://dx.doi.org/doi:10.2134/agronj2012.0393

To obtain a copy of the complete article, please contact Madeline Fisher at 608-268-3973, mfisher@sciencesocieties.org or Caroline Schneider at 608-268-3976, cschneider@sciencesocieties.org.

Spyridon Mourtzinis
szm0020@tigermail.auburn.edu
The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://dx.doi.org/doi:10.2134/agronj2012.0393.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: www.agronomy.org/publications/aj

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Madeline Fisher | Newswise
Further information:
http://www.agronomy.org

Further reports about: Agronomy Stage Acting biofuel industries crop yield growing season

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>