Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn Yield Prediction Model Uses Simple Measurements at a Specific Growth Stage

04.07.2013
The ability to predict corn yields would benefit farmers as they plan the sale of their crops and biofuel industries as they plan their operations.

A new study published in the July-August issue of Agronomy Journal describes a robust model that uses easily obtained measurements, such as plant morphology and precipitation, collected specifically at the silking growth stage of the plant. The new model could help both growers and industry maximize their profits and efficiency.


Photo courtesy of Spyridon Mourtzinis.
Measuring the stem diameter of corn crops.

Forecasting crop yield can be extremely useful for farmers. If they have an idea of the amount of yield they can expect, they can contract their corn prior to harvest, often securing a more competitive price than if they were to wait until after harvest. Likewise, industry can benefit from yield predictions by better planning the logistics of their business. But dependable forecasts can be difficult to find.

Several methods of predicting and modeling crop yields have been used in the past with varying success. Statistical models often don’t take into account characteristics of the plants, the weather, or the management practices limiting their usefulness. Some models are based on information from just a single year or location.

“When you develop a model using single location or year data, it will have limited practical applications,” explains Spyridon Mourtzinis, lead author of the study. “You don’t include variability from multiple environments.”

The new study from Mourtzinis and his co-authors from Auburn University found a more robust model for predicting both corn grain and stover yield. The model uses equations calculated with information about nitrogen fertilization rates, precipitation, and plant morphology, such as plant height, stem diameter, height of the first ear, number of forming ears, and plant population.

“Previous attempts were mainly looking at weather factors,” says Francisco Arriaga, co-author of the study and now an assistant professor at the University of Wisconsin-Madison. “This approach has other factors included in the model, and that is an important strength.”

The timing of the measurements is also an important aspect of the model. Mourtzinis took weekly measurements from over 100 plots throughout the growing season to find the best window during which to collect data to be used in the equations. The time-consuming work paid off.

“We looked at all the vegetative states to see which one was best, and it turned out to be the R1 growth stage,” explains Arriaga. “Other models tried to take measurements earlier, but that may be why they had poor results. Things change as the season goes by, and the stage we found was the critical one.”

The R1 or silking growth stage, when silks are first visible outside the husks, is about two to two and half months before harvest. This model, then, would provide predictions early enough to affect crop prices and to allow industries to plan their operations. While even earlier predictions might be possible, they would depend on better forecasting of weather, which can greatly affect yields. Weather changes significantly throughout the growing season, and current forecasts are not dependable.

Another reason that the new model is robust is because data was collected at two different sites in Alabama over three years. The equations used in the current model, then, translated over six sets of data suggesting that it could be used in a variety of environments. Whether that is true is a goal of future experiments.

“It would be interesting to test the equations across a lot more environments now that we know which growth stage to target,” says Arriaga.

Future studies will also test the model with other corn hybrids and management practices. As more data is collected from a variety of environments and growing conditions, the authors are hopeful that the model will continue to be an accurate predictor of corn yield.

“We need to be open-minded,” says Mourtzinis. “The equations might change a bit when we get more data from more environments, but I think we can build on the current model.”

View the abstract at http://dx.doi.org/doi:10.2134/agronj2012.0393

To obtain a copy of the complete article, please contact Madeline Fisher at 608-268-3973, mfisher@sciencesocieties.org or Caroline Schneider at 608-268-3976, cschneider@sciencesocieties.org.

Spyridon Mourtzinis
szm0020@tigermail.auburn.edu
The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://dx.doi.org/doi:10.2134/agronj2012.0393.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: www.agronomy.org/publications/aj

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Madeline Fisher | Newswise
Further information:
http://www.agronomy.org

Further reports about: Agronomy Stage Acting biofuel industries crop yield growing season

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>