Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn: Many active genes - high yield

03.12.2012
Hybrid plants provide much higher yield than their homozygous parents. Plant breeders have known this for more than 100 years and used this effect called heterosis for richer harvests.
Until now, science has puzzled over the molecular processes underlying this phenomenon. Researchers at the University of Bonn and partners from Tübingen and the USA have now decoded one possible mechanism in corn roots. More genes are active in hybrid plants than in their homozygous parents. This might increase growth and yield of the corn plants. The results are published in the renowned scientific journal Genome Research.

The world population continues to grow and needs to be fed. Cereals provide more than 70 per cent of human nutritional energy. Their yield increases significantly when plant breeders make use of the heterosis effect: “Heterozygous hybrids are significantly more vigorous than homozygous varieties” says Prof. Dr. Frank Hochholdinger, chair of Crop Functional Genomics at the University of Bonn. Heterosis can double the yield of grains like corn or rye. Hence, a hybrid corn cob is usually much larger than that of a homozygous plant.
Molecular causes elusive

Homozygous plants are a result of inbreeding depression: yield shrinks with every generation. Hence, most of the corn grown in Europe and the USA are hybrids. But why are hybrid plants more efficient than their homozygous relatives? “This effect has been known for over 100 years, yet its molecular cause remained unknown until now” reports first author Dr. Anja Paschold, associate of Prof. Hochholdinger at the Institute for Crop Science and Resource Conservation. The findings of the research team now support at a molecular level the complementation model hypothesized in 1917, which suggests that beneficial heritable characters from both parental lines complement deleterious or absent characters in the hybrid plant.

Transcripts indicate the status of gene activity

Researchers at the University of Bonn and their colleagues at Iowa State University and the Max Planck Institute for Developmental Biology in Tübingen compared gene activity in roots of young homozygous and hybrid corn plants. Transcripts provide the blueprints for important proteins. If a certain protein is required, a copy of the corresponding gene is made from the DNA in the nucleus of the cell. This copy of the gene – a ‘transcript’ – is used as a blueprint for producing the relevant protein. “Transcripts are present whenever the corresponding gene is active,” explains Prof. Hochholdinger. Researchers are now surveying all transcripts present in the cell to know which genes are active.
Researchers doing detective work

“Our methods are similar to those of a crime scene investigator. We try matching transcripts – the ‘fingerprints’ – to the corresponding genes – the criminal records” says Prof. Hochholdinger. If a fingerprint is found, then it proves that the corresponding gene is active. “It's just like a fingerprint found at a crime scene,” the biologist explains, “The investigators then know which individual must have been active on the scene.” High-throughput automatic sequencing machines at the Max Planck Institute for Developmental Biology in Tübingen helped to identify the gene transcripts. “Of the 39,656 known corn genes, close to 90% were active in the studied plants,” reports Dr. Paschold.
A few hundred additional genes are active in hybrid plants

However, it has been demonstrated that in hybrids several hundred additional genes were active compared to the homozygous parental lines. The same number of genes is inherited from the two parental plants, however, their activity can differ in the mother and father plant. In hybrids, these different activities are combined. “Compared to the approximately 34,000 active genes the number of 350 to 750 genes that are additionally activated in hybrids is relatively small” says Prof. Hochholdinger, “And yet the small genetic contribution of each of these gene could significantly increase growth and vigor of hybrids.”

Practical benefit for plant breeders

Researchers now want to find out more about the advantages that additional gene activity in hybrids could provide. These findings might provide practical benefits in the future. Until now, plant breeders use extensive field trials to find out which combinations of the thousands of various corn varieties result in efficient hybrids. “Our findings could result in a preselection that could reduce breeders' efforts and expenses,” says Prof. Hochholdinger.
Publication: Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents, Genome Research, DOI: 10.1101/gr.138461.112

Contact:

Prof. Dr. Frank Hochholdinger
INRES – Crop Functional Genomics
Tel. 0228/73 60334 or 73 60331
Email: hochhold@uni-bonn.de

Dr. Anja Paschold
INRES – Crop Functional Genomics
Tel. 0228/ 73 54269
Email: paschold@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de
http://www.uni-bonn.tv/podcasts/20120802_ST_Hochholdinger.mp4/view

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>