Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool-season grasses more profitable than warm-season grasses

06.07.2011
Swine effluent provides fertilizer boost equal to urea

Access to swine effluent or waste water can help a producer grow more grass. But a Texas AgriLife Researcher says the grass is "greener" economically if it is a cool-season rather than a warm-season variety.

Dr. Seong Park, AgriLife Research economist in Vernon, said while the warm-season grasses appear to have a greater growth boost with swine effluent application, the cool-season grasses have marketing advantages that make it a more viable economic option for producers in the Oklahoma Panhandle and Southern Plains.

Park recently had the results of his study published in the Journal of American Society of Farm Manager and Rural Appraisal. The study was funded by a U.S. Department of Agriculture grant for "Comprehensive Animal Waste Systems in Semiarid Ecosystems." Cooperators in the study were Dr. Jeffrey Vitale and Dr. Jeffory Hattey, both with Oklahoma State University.

The study evaluated the risk and economics of intensive forage production systems under four alternative types of forage and two alternative nitrogen sources, he said. The results will help farmers make better informed production decisions.

The study compared two cool-season grasses — orchard grass and wheatgrass — with two warm-season grasses — Bermuda grass and buffalo grass, he said. The two nitrogen sources used to fertilize the crop were urea or swine effluent.

Park said their model showed that intensified production of cool-season grasses with the application of fertilizer appeared to be the more economically viable option for producers in the Southern Plains.

This, in part, was due to seasonal constraints on forage production which drive up prices of cool-season grasses, he said, providing better marketing opportunities than warm-season grasses.

When combined with lower production costs and more stable yields, cool-season grasses have higher returns and less risk than warm-season grasses, which often have negative returns, Park said.

The average economic return of the cool-season grasses was $274.17 per acre, which was considerably higher than the warm-season grasses average return of $36.64 per acre, he said.

"This is an interesting result, since the dry matter yields of warm-season grasses were found to be significantly higher in the field trials than those of the cool-season grasses," Park said.

The difference between yield and economic performance can be explained by both the higher market prices and lower variable costs of the cool-season grasses that compensated for the lower yields, he said.

When it came to the comparison of swine effluent and urea, Park said the swine effluent generated significantly greater returns when applied on the warm-season grasses but provided no growth advantage over urea on the cool-season grasses.

All the grasses respond to higher fertilizer levels, he said. However, the economic model showed urea applications beyond 150 pounds per acre would never be economically efficient due to declining product value at a higher rate.

For swine effluent however, the economic model suggests that higher fertilizer levels could generate higher returns since the marginal-value product has not yet decreased, Park said.

At such higher fertilizer levels, it is possible that swine effluent could result in significantly higher dry matter yields than urea, he said.

Based on average economic returns, the economic model was not able to provide a single best alternative, but it was able to conclude that cool-season grasses perform better than warm-season grasses, Park said.

Four alternatives from the cool-season grasses emerge as generating the highest economic return. These include orchard grass applied with 450 pounds per acre of swine effluent, orchard grass applied with 50 pounds of urea, wheatgrass applied with 450 pounds of swine effluent and wheatgrass applied with 50 pounds of urea.

While there were slight differences in economic returns between them, ranging between $297.19 and $305.03 per acre, the differences were not significant, Park said.

The performance ranking of each forage species was, however, dependent on the decision maker's attitude toward risk, Park said. Urea was found to have less risk than swine effluent and would be the preferred choice for even modestly risk-averse producers.

Future research will be required to explore different types of warm- and cool-season forages to identify a wider range of options for producers, he said.

"This should include investigating other types of management options including herbicides, integration into crop rotations and other types of animal manure, particularly beef," Park said. "This could also provide solutions to producers from a wider range of farming systems beyond the Oklahoma Panhandle and Southern Plains."

Dr. Seong Park | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: AgriLife AgriLife Research Oklahoma Panhandle Southern forage production

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>