Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool-season grasses more profitable than warm-season grasses

06.07.2011
Swine effluent provides fertilizer boost equal to urea

Access to swine effluent or waste water can help a producer grow more grass. But a Texas AgriLife Researcher says the grass is "greener" economically if it is a cool-season rather than a warm-season variety.

Dr. Seong Park, AgriLife Research economist in Vernon, said while the warm-season grasses appear to have a greater growth boost with swine effluent application, the cool-season grasses have marketing advantages that make it a more viable economic option for producers in the Oklahoma Panhandle and Southern Plains.

Park recently had the results of his study published in the Journal of American Society of Farm Manager and Rural Appraisal. The study was funded by a U.S. Department of Agriculture grant for "Comprehensive Animal Waste Systems in Semiarid Ecosystems." Cooperators in the study were Dr. Jeffrey Vitale and Dr. Jeffory Hattey, both with Oklahoma State University.

The study evaluated the risk and economics of intensive forage production systems under four alternative types of forage and two alternative nitrogen sources, he said. The results will help farmers make better informed production decisions.

The study compared two cool-season grasses — orchard grass and wheatgrass — with two warm-season grasses — Bermuda grass and buffalo grass, he said. The two nitrogen sources used to fertilize the crop were urea or swine effluent.

Park said their model showed that intensified production of cool-season grasses with the application of fertilizer appeared to be the more economically viable option for producers in the Southern Plains.

This, in part, was due to seasonal constraints on forage production which drive up prices of cool-season grasses, he said, providing better marketing opportunities than warm-season grasses.

When combined with lower production costs and more stable yields, cool-season grasses have higher returns and less risk than warm-season grasses, which often have negative returns, Park said.

The average economic return of the cool-season grasses was $274.17 per acre, which was considerably higher than the warm-season grasses average return of $36.64 per acre, he said.

"This is an interesting result, since the dry matter yields of warm-season grasses were found to be significantly higher in the field trials than those of the cool-season grasses," Park said.

The difference between yield and economic performance can be explained by both the higher market prices and lower variable costs of the cool-season grasses that compensated for the lower yields, he said.

When it came to the comparison of swine effluent and urea, Park said the swine effluent generated significantly greater returns when applied on the warm-season grasses but provided no growth advantage over urea on the cool-season grasses.

All the grasses respond to higher fertilizer levels, he said. However, the economic model showed urea applications beyond 150 pounds per acre would never be economically efficient due to declining product value at a higher rate.

For swine effluent however, the economic model suggests that higher fertilizer levels could generate higher returns since the marginal-value product has not yet decreased, Park said.

At such higher fertilizer levels, it is possible that swine effluent could result in significantly higher dry matter yields than urea, he said.

Based on average economic returns, the economic model was not able to provide a single best alternative, but it was able to conclude that cool-season grasses perform better than warm-season grasses, Park said.

Four alternatives from the cool-season grasses emerge as generating the highest economic return. These include orchard grass applied with 450 pounds per acre of swine effluent, orchard grass applied with 50 pounds of urea, wheatgrass applied with 450 pounds of swine effluent and wheatgrass applied with 50 pounds of urea.

While there were slight differences in economic returns between them, ranging between $297.19 and $305.03 per acre, the differences were not significant, Park said.

The performance ranking of each forage species was, however, dependent on the decision maker's attitude toward risk, Park said. Urea was found to have less risk than swine effluent and would be the preferred choice for even modestly risk-averse producers.

Future research will be required to explore different types of warm- and cool-season forages to identify a wider range of options for producers, he said.

"This should include investigating other types of management options including herbicides, integration into crop rotations and other types of animal manure, particularly beef," Park said. "This could also provide solutions to producers from a wider range of farming systems beyond the Oklahoma Panhandle and Southern Plains."

Dr. Seong Park | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: AgriLife AgriLife Research Oklahoma Panhandle Southern forage production

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>