Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Controlling gait of horses may be possible, says key study from Texas A&M

Analysis of a specific mutation in a gene in horses that affects the ability of horses to use alternate gaits is strongly related to racing performance and is advantageous for harness-racing horses.

In domestic horses, the mutation has had a major impact on their diversification, as the altered gait characteristics of a number of breeds apparently require this mutation, according to a study that includes a Texas A&M University researcher.

Gus Cothran, a professor in the Animal Genetic Lab of the College of Veterinary Medicine & Biomedical Sciences, is part of a team of researchers that examined motion in horses and also mice. Their findings are published in the current issue of Nature magazine.

Cothran and the team used a process called "whole genome SNP analysis" to study the genes of 70 Icelandic horses that had either four gaits or five, with the pace being the fifth gait. This pointed to a gene identified as DMRT3 that is critical for horse motion and limb movement.

They found that DMRT3 has a major impact on the movement of a horse, especially its gait. Horses have gaits classified in three descriptions of speed: walk, trot and gallop.

" 'Gaitedness' is a trait that naturally occurs in all horses, but many breeds have been developed for a specific speed or gait," Cothran explains.

The team sequenced the DMRT3 gene of the test horses and found that in almost every case of gaited horses, there was mutation in the DMRT3 that caused a premature "stop codon" which causes the protein product of the gene to be terminated before the whole protein is completed. This alters the function of the protein which leads to the differences associated with the gait.

Cothran and the team also examined the same gene and its effect on mice.

"We specifically looked at the gene and its effect on the movement of mice, such as its swimming ability," he adds.

"The motion ability of mice seemed suppressed and was similar, though not identical to that of gaited horses."

Cothran says with more research, the findings could have critical importance to horse breeding and horse racing. Many horses are specifically bred for certain types of gait, such as harness racing.

"We need to examine the DMRT3 on certain breeds and see if it can directly affect the speed and movement of horses," he adds.

"Naturally, it's something that horse breeders and anyone involved with horse racing would be interested in and would want to know about. These findings could have a major impact on future horse breeding.

"We think it's an exciting step in looking at motion, speed and limb movement, and it's possible it could have implications in other species, too."

The project was funded by grants from the Swedish Brain Foundation and computer resources were supplied by the Royal Swedish Academy of Sciences Research.

About Research at Texas A&M University:

As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or; Gus Cothran at (979) 845-0229 or

More news about Texas A&M University, go to

Keith Randall | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>