Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling gait of horses may be possible, says key study from Texas A&M

30.08.2012
Analysis of a specific mutation in a gene in horses that affects the ability of horses to use alternate gaits is strongly related to racing performance and is advantageous for harness-racing horses.

In domestic horses, the mutation has had a major impact on their diversification, as the altered gait characteristics of a number of breeds apparently require this mutation, according to a study that includes a Texas A&M University researcher.

Gus Cothran, a professor in the Animal Genetic Lab of the College of Veterinary Medicine & Biomedical Sciences, is part of a team of researchers that examined motion in horses and also mice. Their findings are published in the current issue of Nature magazine.

Cothran and the team used a process called "whole genome SNP analysis" to study the genes of 70 Icelandic horses that had either four gaits or five, with the pace being the fifth gait. This pointed to a gene identified as DMRT3 that is critical for horse motion and limb movement.

They found that DMRT3 has a major impact on the movement of a horse, especially its gait. Horses have gaits classified in three descriptions of speed: walk, trot and gallop.

" 'Gaitedness' is a trait that naturally occurs in all horses, but many breeds have been developed for a specific speed or gait," Cothran explains.

The team sequenced the DMRT3 gene of the test horses and found that in almost every case of gaited horses, there was mutation in the DMRT3 that caused a premature "stop codon" which causes the protein product of the gene to be terminated before the whole protein is completed. This alters the function of the protein which leads to the differences associated with the gait.

Cothran and the team also examined the same gene and its effect on mice.

"We specifically looked at the gene and its effect on the movement of mice, such as its swimming ability," he adds.

"The motion ability of mice seemed suppressed and was similar, though not identical to that of gaited horses."

Cothran says with more research, the findings could have critical importance to horse breeding and horse racing. Many horses are specifically bred for certain types of gait, such as harness racing.

"We need to examine the DMRT3 on certain breeds and see if it can directly affect the speed and movement of horses," he adds.

"Naturally, it's something that horse breeders and anyone involved with horse racing would be interested in and would want to know about. These findings could have a major impact on future horse breeding.

"We think it's an exciting step in looking at motion, speed and limb movement, and it's possible it could have implications in other species, too."

The project was funded by grants from the Swedish Brain Foundation and computer resources were supplied by the Royal Swedish Academy of Sciences Research.

About Research at Texas A&M University:

As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu; Gus Cothran at (979) 845-0229 or gcothran@cvm.tamu.edu

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu
http://tamutimes.tamu.edu/

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>