Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling gait of horses may be possible, says key study from Texas A&M

30.08.2012
Analysis of a specific mutation in a gene in horses that affects the ability of horses to use alternate gaits is strongly related to racing performance and is advantageous for harness-racing horses.

In domestic horses, the mutation has had a major impact on their diversification, as the altered gait characteristics of a number of breeds apparently require this mutation, according to a study that includes a Texas A&M University researcher.

Gus Cothran, a professor in the Animal Genetic Lab of the College of Veterinary Medicine & Biomedical Sciences, is part of a team of researchers that examined motion in horses and also mice. Their findings are published in the current issue of Nature magazine.

Cothran and the team used a process called "whole genome SNP analysis" to study the genes of 70 Icelandic horses that had either four gaits or five, with the pace being the fifth gait. This pointed to a gene identified as DMRT3 that is critical for horse motion and limb movement.

They found that DMRT3 has a major impact on the movement of a horse, especially its gait. Horses have gaits classified in three descriptions of speed: walk, trot and gallop.

" 'Gaitedness' is a trait that naturally occurs in all horses, but many breeds have been developed for a specific speed or gait," Cothran explains.

The team sequenced the DMRT3 gene of the test horses and found that in almost every case of gaited horses, there was mutation in the DMRT3 that caused a premature "stop codon" which causes the protein product of the gene to be terminated before the whole protein is completed. This alters the function of the protein which leads to the differences associated with the gait.

Cothran and the team also examined the same gene and its effect on mice.

"We specifically looked at the gene and its effect on the movement of mice, such as its swimming ability," he adds.

"The motion ability of mice seemed suppressed and was similar, though not identical to that of gaited horses."

Cothran says with more research, the findings could have critical importance to horse breeding and horse racing. Many horses are specifically bred for certain types of gait, such as harness racing.

"We need to examine the DMRT3 on certain breeds and see if it can directly affect the speed and movement of horses," he adds.

"Naturally, it's something that horse breeders and anyone involved with horse racing would be interested in and would want to know about. These findings could have a major impact on future horse breeding.

"We think it's an exciting step in looking at motion, speed and limb movement, and it's possible it could have implications in other species, too."

The project was funded by grants from the Swedish Brain Foundation and computer resources were supplied by the Royal Swedish Academy of Sciences Research.

About Research at Texas A&M University:

As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu; Gus Cothran at (979) 845-0229 or gcothran@cvm.tamu.edu

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu
http://tamutimes.tamu.edu/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>