Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling cucumber beetles organically

19.02.2009
Pest numbers reduced, fruit yields increased using organic methods

As the popularity of organic produce increases with consumers, growers need more options to manage pests naturally.

John D. Sedlacek and Gary R. Cline (retired) of the Land Grant Program at Kentucky State University led a research project designed to investigate options for reducing the presence of cucumber beetles. These pests damage crops by eating the roots, shoots, and flowers, and transmit the bacterial wilt pathogen. The study, published in the American Society of Horticultural Science journal HortTechnology, compares several practices in watermelon and muskmelon crops.

In 2002, watermelon was grown on black plastic mulch with the exception of one group, which was grown on Al-plastic, an aluminum coated plastic mulch previously linked to reduced cucumber beetle densities on squash. Another plot of watermelons was planted with companion plants thought to repel cucumber beetles. A third group was planted with a different set of companion plants that seem to attract insects that prey on cucumber beetles. Sticky traps stationed among the plants collected cucumber beetles, which were counted and removed on a weekly basis. The watermelon yields were not adversely affected by the Al-plastic nor by the companion plants.

More beetles were collected in the control and Al-plastic groups than the companion plant groups. Similar numbers of beetles were trapped in repellent plant groups and beneficial insect-attracting plant groups, suggesting these plants may be more valuable as a physical barrier to the beetles' movement than for their attractive or repellent properties.

In 2003, the study was replicated using muskmelons. Al-plastic was included again, but the companion plant groups were combined to include beetle-repelling radishes and predator-insect-attracting buckwheat. Other treatments included use of rowcovers and the organic insecticide PyGanic®. The separate Al-plastic and companion plant groups increased muskmelon yields of 75% and 66%, respectively, compared to the control. Rowcovers also significantly increased yield. The number of trapped beetles was significantly higher in the control group than in any other.

Then, in 2004, the study was repeated, but this time the insecticide group was replaced by a combination of Al-plastic and companion plants. Muskmelon weights varied significantly among all groups, with the greatest weights coming from the Al-plastic and companion plant combined groups with rowcovers. Weights in the Al-plastic-only group were greater than in the companion plant-only group.

All of the treatments, except for the insecticide, significantly increased yields compared to control groups. It appeared that some treatments, such as companion plants, may have reduced beetle populations by affecting adults, while others, such as the Al-plastic, may have affected beetle larvae still in the soil.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://horttech.ashspublications.org/cgi/content/abstract/18/3/436

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>