Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation of whitebark pine may hinge on preservation of ponderosa

17.02.2011
New study of Clark's nutcrackers suggests that their caching of whitebark pine seeds is less effective than previously thought at restoring populations of the declining conifer

The caching of whitebark pine seeds by the Clark's nutcracker in late summer and early fall may not be enough to regenerate populations of the imperiled conifer in most of its range, scientists have found.

Their research—which is featured in the February issue of Science Findings, a monthly publication of the U.S. Forest Service's Pacific Northwest Research Station—suggests, for the first time, that the success of whitebark pine restoration may be linked to the conservation of another tree species: ponderosa pine.

"Whitebark pine is a keystone species in the high-mountain ecosystems of the northern Rockies, Cascades, Olympics, and eastern Sierra Nevada because it plays a major role in creating suitable conditions for the growth of other plants and in supplying seeds, which are consumed by a number of animals," said Martin Raphael, a research wildlife biologist with the station and one of the study's collaborators. "But the species is in trouble and is experiencing declines of 45 percent across some of its range."

Regeneration of the high-elevation tree—which is threatened today by outbreaks of the mountain pine beetle and blister rust—would seem intimately tied to the foraging behavior of the Clark's nutcracker, a crow-sized bird that propagates the tree by removing its large seeds from its cones and caching them in the ground. Unlike most other pines, the cones of whitebark trees do not open on their own to release their seeds, but must be forced open by Clark's nutcrackers. The birds' spatial memory allows them to retrieve seeds from many of their caches throughout the year; those that remain are left to germinate.

"The nutcrackers flock around whitebark pine stands in autumn as the cones ripen and use their sharp, strong bills to hammer into the tightly closed cones and dig out the seeds," said Teresa Lorenz, a doctoral student who led the study, along with Raphael and Forest Service geneticist Carol Aubry, as part of her master's degree studies at Utah State University. "You can see the cone chips flying."

In the study, aimed at determining how effective the birds are in regenerating whitebark pine, the researchers fitted 54 Clark's nutcrackers in the Olympic and Cascade Mountains with radio collars and tracked them for three seasons. They found that:

• The nutcrackers foraged widely for whitebark pine seeds, but transported nearly all of them back to their home ranges for caching, which suggests that natural generation of the tree would be greatest within the birds' home ranges

• The nutcrackers transported seeds over much longer distances than previously observed, sometimes up to 20 miles, which suggests that the birds facilitate a great amount of genetic mixing of the tree

• The nutcrackers tended to cache their seeds in sheltered locations at the driest, lowest elevation sites within their range—areas unsuitable for successful whitebark pine germination

"One of the most important things this study helped us to understand is how unlikely it is that whitebark pine seeds will end up in good germination spots," Raphael said. "Birds placed only about 15 percent of the seeds they gathered in places where germination is actually possible."

In addition to revealing that Clark's nutcracker caching alone, while critical, would not be sufficient to recover populations of whitebark pine, the study also is the first to document the role of the birds in disseminating the seeds of ponderosa pine. The nutcrackers not only routinely gathered ponderosa pine seeds within their home ranges, but were more effective in dispersing them to suitable germination sites than they were at dispersing whitebark pine seeds.

"Because we found ponderosa pine seeds to be an important food for nutcrackers in Washington and Oregon, the success of whitebark pine restoration may be irrevocably linked to the conservation of low-elevation ponderosa pine," Lorenz said. "What we've found can help managers focus restoration efforts and may help them refine seed boundaries and identify the likeliest regeneration sites."

To read the February issue of Science Findings online, visit http://www.treesearch.fs.fed.us/pubs/37291.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>