Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer models suggest vaccination or culling best to prevent foot-and-mouth disease

20.01.2010
Combining technology and animal health, a group of Kansas State University researchers is developing a more effective way to predict the spread of foot-and-mouth disease and the impact of preventative measures.

The researchers are finding that if a foot-and-mouth disease outbreak is not in the epidemic stage, preemptive vaccination is a minimally expensive way to halt the disease's spread across a network of animals. But if there's a high probability of infection, computer models show that culling strategies are better.

"We are trying to do predictive as well as preventative modeling using a network-based approach," said Sohini Roy Chowdhury, a master's student in electrical engineering. "First we track how the infection is spreading in space and time. Then we try to mitigate that with certain strategies. The novel contribution of this project is that we considered networks in countries like Turkey, Iran and Thailand that don't have a highly built database."

Roy Chowdhury is working with Caterina Scoglio, associate professor of electrical and computer engineering, and William Hsu, associate professor of computing and information sciences. They presented the work in December 2009 at the Second International Conference on Infectious Diseases Dynamics in Athens, Greece.

The researchers used mathematical equations to predict how foot-and-mouth disease spreads over a network of infected herds. In the network, the nodes are places like stockyards and grazing lands where animals are held. They are connected in various ways, such as by animals' grazing movements and by how people and vehicles move among the herds. Hsu said the researchers' goal is to increase the accuracy of models that predict disease spread in these networks over space and time.

In the experiments, the researchers ran up to a week of predictive modeling on a real network and saw how well it matched data from the actual episode. Roy Chowdhury said they also used artificial intelligence-based modules to cross compare the model's accuracy.

The researchers also tested such mitigation strategies as vaccination, culling and isolation to see how they affected the network. In real-world outbreaks of foot-and-mouth disease, culling often is presumed to be the best strategy, but Scoglio said their research could shed more light on the effectiveness of this practice.

"It is the hope to properly contain a disease like foot-and-mouth disease that is so infectious while minimizing the economic losses," Scoglio said.

Hsu said this study also could benefit relief workers sent to help contain foot-and-mouth disease. The K-State network models improve upon existing ones, he said, because they consider such factors as wind, animal grazing and human movements between regions, as well as the number of meat markets in an area.

Scoglio's research group has studied disease outbreaks using computer models of networks before, but this project is different in that it considers a specific disease, she said.

Hsu contributed his research in data mining, which seeks to scour news stories and other online public sources and extract information that could offer clues about disease outbreaks. For this project, Hsu's system crawled and analyzed Web articles from news agencies like the BBC and CNN, as well as such sources as disease control fact sheets from universities.

"Just as Google indexes sites based on authoritativeness and looks for hub sites, we also look to start our crawls of the Web from sites like the World Health Organization and the Centers for Disease Control and Prevention," Hsu said.

At the conference in Athens, Roy Chowdhury also presented a poster on preliminary work the group has done on H1N1 infections. Using temporal models, they generated predictions on when infections would peak and the rate at which they would drop off after that peak. Roy Chowdhury used data from the Centers for Disease Control and Prevention. The group plans to extend this analysis of the H1N1 epidemic using network-based models.

Caterina Scoglio | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>