Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Composted dairy manure in foliage plant production

10.09.2009
Cowpeat viable substitute for peat in container plant propagation

Peat has been a major component of substrates used in container plant production since the 1960s. Highly porous with the capacity to hold water, peat makes an ideal rooting and growing medium for potted plants.

But harvesting peat (and draining valuable peatlands in the process) releases the carbon stored in peat into the atmosphere as carbon dioxide. And because peat plays an important role in wetland ecosystems—peat bogs improve groundwater quality and are unique habitats for wild plants and animals—the use of peat has been challenged and peat mining is increasingly regulated.

Researchers have worked for years to find alternative organic materials that can be used as partial or complete substitutes for peat. Composted biosolids, municipal solid waste, and yard trimmings have all been investigated as possible components for use in bedding, landscape and foliage plant production. Now, composted dairy manure is being tested as an economical and environmentally sound alternative to peat.

Scientists Qiansheng Li, Jianjun Chen, Russell D. Caldwell, and Min Deng from the Department of Environmental Horticulture and Mid-Florida Research and Education Center (MREC) at the University of Florida's Institute of Food and Agricultural Sciences, published a research report in HortTechnology that evaluated the potential for using cowpeat, a composted dairy manure, as a component of container substrates for foliage plant propagation.

For the study, a commercial formulation (20% perlite and 20% vermiculite with 60% Canadian or Florida peat based on volume) was used as control, and peat was replaced by cowpeat at 10% increments up to 60%, which produced 14 substrates. The 14 substrates were used for rooting single-node cuttings of golden pothos (Epipremnum aureum) and heartleaf philodendron (Philodendron scandens ssp. oxycardium) and three-node cuttings of 'Florida Spire' fig (Ficus benjamina) and germinating seeds of sprenger asparagus (Asparagus densiflorus) in a shaded greenhouse.

The research showed that container substrates formulated by incorporating 10% to 60% cowpeat had physical and chemical properties similar to the commercial Canadian and Florida peat-based substrates. Biological testing also demonstrated that all tested cuttings rooted and seed germination rates of cowpeat substituted substrates were greater than or comparable to those of control substrates.

The researchers observed that the promising results of the study suggest that there is a potential for using cowpeat for foliage plant propagation and probably for foliage plant production. "The use of cowpeat will provide the containerized plant industry with an alternative to peat, which in turn reduces peat mining and encourages composting of dairy manure, thus contributing to the well-being of our environment", Chen concluded.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/19/2/340

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>