Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color test enhances tomato analyzer software

02.03.2009
TACT proves accurate, user-friendly in digital image analysis of color in fruits, vegetables

When it comes to fresh vegetables and fruits, color is one of the best indicators of quality. Along with texture, size, and flavor, color plays an important role in the business of horticultural crop production and marketing.

In tomatoes, for example, color and color uniformity contribute directly to quality and marketability. The presence of yellow shoulder disorder, or YSD, a ripening disorder that results in blotchy discoloration under the skin of the tomato, is a major quality issue.

Color disorders are also an economic problem. U.S. Department of Agriculture (USDA) "grades" are largely determined by the amount of off-color tissue in products, and growers can receive premiums for fruit based on color and uniformity. Discoloration due to YSD also reduces concentrations of nutrients such as lycopene and beta-carotene. Clearly, reducing YSD in tomatoes could benefit producers, processors, and consumers alike.

In an issue of the Journal of the American Society of Horticultural Science (ASHS) David Francis and his colleagues at The Ohio State University's Agricultural Research and Development Center and the College of Wooster describe the use of a new tool they implemented in the Tomato Analyzer (TA) software called Color Test (CT). This remarkable tool allows scanning devices to be calibrated using color standards. The objective of the research was to implement a new digital image analysis tool.

According to the study, Tomato Analyzer was originally designed to analyze the morphology of tomato fruit. The researchers in this study developed a module for color measurement "to expand the array of objective phenotypic analyses implemented". TACT was applied to fruits and vegetables of various color and color uniformity.

"TACT was designed to be user-friendly with minimum requirements for running it, yet accurate and precise for collecting objective measurements. It facilitates data collection and management, and requires equipment that is relatively more affordable", Francis explained.

Traditional tools used to measure color of vegetables and fruits require extensive environmental control, especially for the quality and quantity of light, shadow, and reflection. In contrast, the flatbed scanners used in this study required only a cardboard box as a cover to minimize the effect of shadow.

TACT was able to accurately capture and describe the characteristic color for each crop when applied to other fruits and vegetables of varying colors and color uniformity. Color uniformity was also well characterized for fruit that tend to have nonuniform pigmentation, such as strawberry. TACT proved to be a reliable, precise, and affordable method for digital image analysis of color

The study authors envision that TACT could be used not only in color analysis of fresh crops, but perhaps to evaluate discoloration of food after processing or cooking in food science applications.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>