Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate-smart agriculture should be livelihood-smart too

05.12.2011
Encouraging climate-smart agriculture can lead to climate change adaptation practices in a partnership where the farmer's needs are addressed.

"Climate-smart agriculture has the potential to increase sustainable productivity, increase the resilience of farming systems to climate impacts and mitigate climate change through greenhouse gas emission reductions and carbon sequestration," says Henry Neufeldt the lead expert on climate change at the World Agroforestry Centre (ICRAF).

Agroforestry – the growing of trees on farms – is one such climate-smart agricultural practice, and it has tremendous potential for both climate change adaptation and mitigation as well as providing a source of fuel, food, medicine and supplementing the diets of smallholder farmers.

Tree-based farming systems need to be encouraged as part of a low carbon emissions development pathway and adaptation strategy. For example, in tropical forest margins, agroforestry has been used in several protected area landscape buffer zones and within conservation areas as one way of alleviating pressure on forests for timber, thereby reducing deforestation and the resultant loss of carbon sinks.

Drawing lessons from the Philippines, a newly released policy brief from the ASB Partnership shows that programmes to support such initiatives are more likely to succeed in areas that are already deforested or where remaining forests are effectively protected, and where farmers have secure land tenure.

However, agricultural methods that focus on climate change solely will not be as successful as methods that focus on improving farmer livelihoods. Food security is the central focus for many smallholder farmers. In her work, Tannis Thorlakson, a scientist at the World Agroforestry Centre discovered that smallholder farmers in western Kenya are aware that their climate-coping strategies are not sustainable because they are forced to rely on actions that have negative long-term repercussions. These include eating seeds reserved for planting, selling assets (livestock, tree poles, etc.) at below market value, or building up debt in order to survive. These are only short-term solutions to drought and poverty.

By 2050 approximately 70 percent more food will have to be produced to feed growing populations, particularly in developing countries. As climate change causes temperatures to rise and precipitation patterns to change, more weather extremes will potentially reduce global food production.

In Africa, where 80 percent of smallholder farmers own less than two hectares of land, there will be 1.2 billion more people to feed. Farmers will have to adapt to these changing conditions in order to feed this growing population.

"Our research shows that when farmers change their farming practices their returns are not immediate and in some cases there is a drop in income. For climate-smart agriculture to work there has to be incentive for farmers to change and maintain new production systems," says Neufeldt, speaking at the ongoing COP17 Climate Change Talks in Durban, South Africa.

"Climate-smart agriculture won't be effective unless it specifically targets food security and livelihoods. Farmers must have sufficient incentives to change the way they manage their production systems," says Neufeldt.

Sayon Kourouma, is a farmer from Guinea, West Africa, who has benefitted from an ICRAF partnership project for peanut tree farmers, that seeks to cater to household needs while improving the way in which local forests are managed.

"I am now earning four times as much as I made in the past," says,Sayon. "If my children are sick, I don't have to ask my husband for money, I can pay for medicines myself."

Other signs of her new-found prosperity include a cow and her mobile phone which she uses to transact business. To cater to her basic necessities, Sayon no longer relies on solutions that bring about deforestation. To her, climate-smart agriculture has helped her adapt to climate change while improving her living standards.

Small or micro-scale farming is the primary source of livelihood for over two-thirds of Africans. With this great number of farmers, climate change adaptation can be enhanced once the farmers have the right incentives to participate in climate-smart agriculture. Farmers in the Thorlakon study believe the most effective way to adapt to climate-related shocks is through improving their general standard of living.

In discussions about how to help smallholder farmers adapt to climate change, it will be paramount to first focus on their short-term needs and find mutually beneficial methods that meet these needs and support the push towards climate change adaptation.

About the World Agroforestry Centre (ICRAF)

The World Agroforestry Centre (ICRAF) is part of the alliance of the Consultative Group on International Agricultural Research (CGIAR) centres dedicated to generating and applying the best available knowledge to stimulate agricultural growth, raise farmers' incomes, and protect the environment.

About ASB

ASB is the only global partnership devoted entirely to research on the tropical forest margins. ASB's goal is to raise productivity and income of rural households in the humid tropics without increasing deforestation or undermining essential environmental services.

Paul Stapleton | EurekAlert!
Further information:
http://www.worldagroforestry.org

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>