Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate-smart agriculture should be livelihood-smart too

Encouraging climate-smart agriculture can lead to climate change adaptation practices in a partnership where the farmer's needs are addressed.

"Climate-smart agriculture has the potential to increase sustainable productivity, increase the resilience of farming systems to climate impacts and mitigate climate change through greenhouse gas emission reductions and carbon sequestration," says Henry Neufeldt the lead expert on climate change at the World Agroforestry Centre (ICRAF).

Agroforestry – the growing of trees on farms – is one such climate-smart agricultural practice, and it has tremendous potential for both climate change adaptation and mitigation as well as providing a source of fuel, food, medicine and supplementing the diets of smallholder farmers.

Tree-based farming systems need to be encouraged as part of a low carbon emissions development pathway and adaptation strategy. For example, in tropical forest margins, agroforestry has been used in several protected area landscape buffer zones and within conservation areas as one way of alleviating pressure on forests for timber, thereby reducing deforestation and the resultant loss of carbon sinks.

Drawing lessons from the Philippines, a newly released policy brief from the ASB Partnership shows that programmes to support such initiatives are more likely to succeed in areas that are already deforested or where remaining forests are effectively protected, and where farmers have secure land tenure.

However, agricultural methods that focus on climate change solely will not be as successful as methods that focus on improving farmer livelihoods. Food security is the central focus for many smallholder farmers. In her work, Tannis Thorlakson, a scientist at the World Agroforestry Centre discovered that smallholder farmers in western Kenya are aware that their climate-coping strategies are not sustainable because they are forced to rely on actions that have negative long-term repercussions. These include eating seeds reserved for planting, selling assets (livestock, tree poles, etc.) at below market value, or building up debt in order to survive. These are only short-term solutions to drought and poverty.

By 2050 approximately 70 percent more food will have to be produced to feed growing populations, particularly in developing countries. As climate change causes temperatures to rise and precipitation patterns to change, more weather extremes will potentially reduce global food production.

In Africa, where 80 percent of smallholder farmers own less than two hectares of land, there will be 1.2 billion more people to feed. Farmers will have to adapt to these changing conditions in order to feed this growing population.

"Our research shows that when farmers change their farming practices their returns are not immediate and in some cases there is a drop in income. For climate-smart agriculture to work there has to be incentive for farmers to change and maintain new production systems," says Neufeldt, speaking at the ongoing COP17 Climate Change Talks in Durban, South Africa.

"Climate-smart agriculture won't be effective unless it specifically targets food security and livelihoods. Farmers must have sufficient incentives to change the way they manage their production systems," says Neufeldt.

Sayon Kourouma, is a farmer from Guinea, West Africa, who has benefitted from an ICRAF partnership project for peanut tree farmers, that seeks to cater to household needs while improving the way in which local forests are managed.

"I am now earning four times as much as I made in the past," says,Sayon. "If my children are sick, I don't have to ask my husband for money, I can pay for medicines myself."

Other signs of her new-found prosperity include a cow and her mobile phone which she uses to transact business. To cater to her basic necessities, Sayon no longer relies on solutions that bring about deforestation. To her, climate-smart agriculture has helped her adapt to climate change while improving her living standards.

Small or micro-scale farming is the primary source of livelihood for over two-thirds of Africans. With this great number of farmers, climate change adaptation can be enhanced once the farmers have the right incentives to participate in climate-smart agriculture. Farmers in the Thorlakon study believe the most effective way to adapt to climate-related shocks is through improving their general standard of living.

In discussions about how to help smallholder farmers adapt to climate change, it will be paramount to first focus on their short-term needs and find mutually beneficial methods that meet these needs and support the push towards climate change adaptation.

About the World Agroforestry Centre (ICRAF)

The World Agroforestry Centre (ICRAF) is part of the alliance of the Consultative Group on International Agricultural Research (CGIAR) centres dedicated to generating and applying the best available knowledge to stimulate agricultural growth, raise farmers' incomes, and protect the environment.

About ASB

ASB is the only global partnership devoted entirely to research on the tropical forest margins. ASB's goal is to raise productivity and income of rural households in the humid tropics without increasing deforestation or undermining essential environmental services.

Paul Stapleton | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>