Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Will Reduce Crop Yields Sooner

21.03.2014

Global warming of only two degrees Celsius will be detrimental to three essential food crops

Results from a new study co-authored by Netra Chhetri, a faculty member with the Consortium for Science, Policy & Outcomes at Arizona State University, show global warming of only two degrees Celsius will be detrimental to three essential food crops in temperate and tropical regions. And beginning in the 2030s, yields from those crops will start to decline significantly.


Arizona State University

Netra Chhetri, professor in the School of Urban Planning and Geographical Sciences at Arizona State University, and University of Leeds Professor Andy Challinor report that crop yields will be negatively affected by climate change much earlier than expected in the journal Nature Climate Change.

“This study has been able to quantify the likely impacts of differing degrees of climate change on yields, by crop and by region,” said Chhetri. “In general, Sub-Saharan Africa and South Asia showed significant yield reductions for the second half of the century.”

In the study, the researchers created a new data set by compiling the results from 1,700 published simulations to evaluate yield impacts of climate change with and without adaptations for rice, maize and wheat. Due to increased interest on the impacts of climate change in global food security, the study was able to create the largest dataset to date on crop responses, with more than double the number of studies that were available for researchers to analyse for the previous IPCC Assessment Report in 2007. “One of the most important findings of this study is that adaptation may not be as effective for rice and maize as it is for wheat,” said Chhetri.

... more about:
»Arizona »Arts »Climate »IPCC »crop »crops »maize »regions

The research paper, 'A meta-analysis of crop yield under climate change and adaptation', published March 16 by the journal Nature Climate Change, feeds directly into the Working Group II report of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report, which is due to be published at the end of March 2014. In the Fourth Assessment Report, to which Chhetri was a contributing author, scientists reported that regions of the world with temperate climates, such as Europe and most of North America, could withstand a couple of degrees of warming without a noticeable effect on harvests, or possibly even benefit from a bumper crop.

With more data available now, researchers see a shift in consensus. “Our research shows that crop yields will be negatively affected by climate change much earlier than expected. Furthermore, the impact of climate change on crops will vary both from year-to-year and from place-to-place—with the variability becoming greater as the weather becomes increasingly erratic,” said University of Leeds Professor Andy Challinor, lead author of the study.

The researchers conclude that, on aggregate, we will see an increasingly negative impact of climate change on crop yields from the 2030s onward. The impact will be greatest in the second half of the century, when decreases of over 25 percent will become increasingly common.

These statistics account for possible adaptation techniques by farmers to mitigate the effects of climate change, such as adjustments in the crop variety and planting date. Later in the century, greater agricultural transformations and innovations will be needed in order to safeguard crop yields for future generations.

“Climate change means a less predictable harvest, with different countries winning and losing in different years. The overall picture remains negative, and we are now starting to see how research can support adaptation by avoiding the worse impacts,” said Challinor.

Netra Chhetri is a professor in the School of Urban Planning and Geographical Sciences. The school and the Consortium for Science, Policy & Outcomes are research units in the College of Liberal Arts and Sciences at Arizona State University

Marissa Huth | newswise
Further information:
http://www.cspo.org

Further reports about: Arizona Arts Climate IPCC crop crops maize regions

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>