Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate Change May Speed Up Forests’ Life Cycles

Many climate studies have predicted that tree species will respond to global warming by migrating via seed dispersal to cooler climates. But a new study of 65 different species in 31 eastern states finds evidence of a different, unexpected response.

Nearly 80 percent of the species aren’t yet shifting their geographic distributions to higher latitudes. Instead, they’re staying in place – but speeding up their life cycles.

The Duke University-led study, published online Wednesday in the peer-reviewed journal Global Change Biology, is the first to show that a changing climate may have dual impacts on forests. It adds to a growing body of evidence, including a 2011 study by the same Duke team, that climate-driven migration is occurring much more slowly than predicted, and most plant species may not be able to migrate fast enough to stay one step ahead of rising temperatures.

“Our analysis reveals no consistent, large-scale northward migration is taking place. Instead, most trees are responding through faster turnover – meaning they are staying in place but speeding up their life cycles in response to longer growing seasons and higher temperatures,” said James S. Clark, H.L. Blomquist Professor of Environment at Duke’s Nicholas School of the Environment.

Anticipating the impacts of this unexpected change on U.S. forests is an important issue for forest managers and for the nation as a whole, Clark said. It will have far-reaching consequences for biodiversity and carbon storage.

To test whether trees are migrating northward, having faster turnover, or both, the scientists went through decades of data on 65 dominant tree species in the 31 eastern states, compiled by the USDA Forest Service’s Forest Inventory and Analysis program. They used computer models to analyze the temperature and precipitation requirements of the trees at different life stages, and also considered factors like reproductive dependence of young and adult trees.

“The patterns we were able to see from this massive study are consistent with forests having faster turnover, where young trees tend to be more abundant than adult trees in warm, wet climates. This pattern is what we would expect to see if populations speed up their life cycle in warming climates,” said lead author Kai Zhu, a doctoral student of Clark’s at Duke. “This is a first sign of climate change impacts, before we see large-scale migrations. It gives a very different picture of how trees are responding to climate change.”

The fact that most trees are not yet showing signs of migration “should increase awareness that there is a significant lag time in how tree species are responding to the changing climate,” Zhu said.

The study was funded by the National Science Foundation (NSF), and Zhu was supported by an NSF Doctoral Dissertation Improvement Grant.

Christopher W. Woodall, research forester at the U.S. Forest Service’s Northern Research Station in St. Paul, Minn., Souparno Ghosh, a postdoctoral researcher in Duke’s Department of Statistical Science, and Alan E. Gelfand, J.B. Duke Professor of Statistics and Decision Sciences in Duke’s Department of Statistical Science, were co-authors of the study. Clark also holds an appointment as professor in the Department of Statistical Science.

NOTE: Kai Zhu is available for additional comment at (919) 613-8037 or James S. Clark is available at (919) 613-8036 or

“Dual Impacts of Climate Change: Forest Migration and Turnover through Life History”
Kai Zhu, Christopher W. Woodall, Souparno Ghosh, Alan E. Gelfand, James S. Clark
Published Sept. 11, 2013, in Global Change Biology
DOI: 10.1111/gcb.12382

Tim Lucas | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>