Climate Change May Speed Up Forests’ Life Cycles

Nearly 80 percent of the species aren’t yet shifting their geographic distributions to higher latitudes. Instead, they’re staying in place – but speeding up their life cycles.

The Duke University-led study, published online Wednesday in the peer-reviewed journal Global Change Biology, is the first to show that a changing climate may have dual impacts on forests. It adds to a growing body of evidence, including a 2011 study by the same Duke team, that climate-driven migration is occurring much more slowly than predicted, and most plant species may not be able to migrate fast enough to stay one step ahead of rising temperatures.

“Our analysis reveals no consistent, large-scale northward migration is taking place. Instead, most trees are responding through faster turnover – meaning they are staying in place but speeding up their life cycles in response to longer growing seasons and higher temperatures,” said James S. Clark, H.L. Blomquist Professor of Environment at Duke’s Nicholas School of the Environment.

Anticipating the impacts of this unexpected change on U.S. forests is an important issue for forest managers and for the nation as a whole, Clark said. It will have far-reaching consequences for biodiversity and carbon storage.

To test whether trees are migrating northward, having faster turnover, or both, the scientists went through decades of data on 65 dominant tree species in the 31 eastern states, compiled by the USDA Forest Service’s Forest Inventory and Analysis program. They used computer models to analyze the temperature and precipitation requirements of the trees at different life stages, and also considered factors like reproductive dependence of young and adult trees.

“The patterns we were able to see from this massive study are consistent with forests having faster turnover, where young trees tend to be more abundant than adult trees in warm, wet climates. This pattern is what we would expect to see if populations speed up their life cycle in warming climates,” said lead author Kai Zhu, a doctoral student of Clark’s at Duke. “This is a first sign of climate change impacts, before we see large-scale migrations. It gives a very different picture of how trees are responding to climate change.”

The fact that most trees are not yet showing signs of migration “should increase awareness that there is a significant lag time in how tree species are responding to the changing climate,” Zhu said.

The study was funded by the National Science Foundation (NSF), and Zhu was supported by an NSF Doctoral Dissertation Improvement Grant.

Christopher W. Woodall, research forester at the U.S. Forest Service’s Northern Research Station in St. Paul, Minn., Souparno Ghosh, a postdoctoral researcher in Duke’s Department of Statistical Science, and Alan E. Gelfand, J.B. Duke Professor of Statistics and Decision Sciences in Duke’s Department of Statistical Science, were co-authors of the study. Clark also holds an appointment as professor in the Department of Statistical Science.

NOTE: Kai Zhu is available for additional comment at (919) 613-8037 or kai.zhu@duke.edu. James S. Clark is available at (919) 613-8036 or jimclark@duke.edu.

“Dual Impacts of Climate Change: Forest Migration and Turnover through Life History”
Kai Zhu, Christopher W. Woodall, Souparno Ghosh, Alan E. Gelfand, James S. Clark
Published Sept. 11, 2013, in Global Change Biology
DOI: 10.1111/gcb.12382
http://onlinelibrary.wiley.com/doi/10.1111/gcb.12382/abstract

Media Contact

Tim Lucas EurekAlert!

More Information:

http://www.duke.edu

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors