Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change’s Impact on Invasive Plants in Western U.S. May Create Restoration Opportunities, Future Perils

28.01.2009
A new study by researchers at Princeton University’s Woodrow Wilson School of Public and International Affairs has found that global climate change may lead to the retreat of some invasive plant species in the western United States, which could create unprecedented ecological restoration opportunities across millions of acres throughout America. At the same time, global warming may enable other invasive plants to spread more widely.

The study, “Climate change and plant invasions: restoration opportunities ahead?”, was co-authored by Bethany Bradley, a biogeographer, Michael Oppenheimer, a geoscientist, and David Wilcove, a conservation biologist, at Princeton’s Woodrow Wilson School, and will soon be published in the journal Global Change Biology.

The researchers assessed the relationship between climate change and the distribution of five prominent invasive plants in the western United States – known colloquially as the “kudzus of the West” – cheatgrass; spotted knapweed; yellow starthistle; tamarisk; and leafy spurge. Such plants are defined as invasive because they were brought into this country from other lands and now dominate and alter ecosystems in ways that threaten native wildlife, agriculture, and ranching. All have greatly expanded their ranges in recent decades in the western U.S., causing millions of dollars in damage to farmlands and rangelands. Invasive plants are increasingly expensive to control, and it is widely believed that global warming will make the problem worse.

But Bradley and her co-authors find that global warming may also reduce the competitiveness of some invasive plants if conditions become climatically unsuitable to the weeds, “creating opportunities for restoration in areas currently dominated by intractable invasive species,” according to the study.

The five species were selected in part because they represent the most problematic plants in the western U.S. The study authors created “bioclimatic envelope models,” wherein the authors identified where the invasive plant species occurred, and identified critical climate variables such as precipitation patterns and temperature patterns that are associated with the presence of the invasive plants under investigation. The authors then determined what combined set of climate variables best described the distribution of these weeds, and mapped all of the places in the U.S. where these climate conditions occur.

Developing such models is important because scientists can use them to assess how changing climate conditions might affect the distributions of invasive plants. Maps of how invasion risk is likely to change with global warming are also important for land managers designing long-term protocols for fighting invasive plants.

The researchers employed 10 atmosphere-ocean general circulation models (AOGCMs) that predict what climatic conditions in the West are likely to be in 2100 if emissions are not limited, and matched those predicted conditions to the climate conditions associated with each of the invasive plant species. The projected invasive species distributions for each of the models were added together to create a map of invasion risk under future climate conditions.

“Just as native species are expected to shift in range and relative competiveness with climate change,” the authors wrote, “the same should be expected of invasive species.”

Specifically, the researchers concluded that climate change is likely to expand invasion risk from yellow starthistle in California and Nevada – and lands currently occupied by invasive populations of the weed in California, Oregon and Washington are unlikely to become unsuitable for the species; hence, they have low potential for restoration. Tamarisk distribution, they found, is unlikely to be affected by climate change.

Cheatgrass, however, is likely to be affected by climate change, potentially moving northwards into parts of Idaho, Montana and Wyoming, but retreating in southern Nevada and Utah. And, according to Bradley and her co-authors, the impacts of climate change will likely shift spotted knapweed, currently distributed throughout the foothills of the Rocky Mountains and the Colorado Plateau, to higher elevations, leading to both expanded risk and restoration opportunities in part of Montana, Wyoming, Utah, and Colorado.

Leafy spurge, abundant in northern states west of the Mississippi River and some rangeland west of the Rockies, will likely retreat from some places in the face of climate change, creating restoration possibilities in Colorado, Nebraska, Iowa, and Minnesota – but potentially expanding into parts of Canada not included in the researchers’ study. In addition, the researchers found that leafy spurge is likely to retreat from Nebraska and parts of Oregon and Iowa, creating strong potential for restoration in these areas.

To better address the impacts of invasive species, the authors note, further modeling and experimental work is needed to determine which species will be able to occupy these sites if the invasive species are reduced or eliminated by climate change. Local native plants (the ones that were there prior to the arrival of the invasive species) may be unable to reoccupy these areas as a result of global warming. If local native plants cannot reoccupy the areas, then native plants from elsewhere in the West will need to be considered for restoration to prevent new invasive species from quickly invading these sites.

“The restoration opportunities associated with the retreat of currently intractable invasive species are vast in the western United States,” the authors wrote. “The uncertainties associated with these changes, as well as the unknown makeup of viable future vegetation… highlight a pressing need for integrated modeling, monitoring, and experimental work to better address the ecological consequences of climate change.”

“The question for policy makers and land managers is, ‘What do we want these lands to be?’” said Wilcove. “These lands will change, and we must decide now – before the window of opportunity closes - whether we do nothing or whether we intervene.”

“Governments need to reduce emissions quickly to avoid a variety of dangerous climate changes, Oppenheimer warned. “At the same time, it will be necessary to adapt to the inevitability of some warming. Proper management of ecosystems to minimize the damages is a key part of any effective adaptation strategy.”

Lucy Collister | alfa
Further information:
http://www.princeton.edu
http://www.wiley.com
http://www3.interscience.wiley.com/journal/121521769/abstract

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>