Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change’s Impact on Invasive Plants in Western U.S. May Create Restoration Opportunities, Future Perils

28.01.2009
A new study by researchers at Princeton University’s Woodrow Wilson School of Public and International Affairs has found that global climate change may lead to the retreat of some invasive plant species in the western United States, which could create unprecedented ecological restoration opportunities across millions of acres throughout America. At the same time, global warming may enable other invasive plants to spread more widely.

The study, “Climate change and plant invasions: restoration opportunities ahead?”, was co-authored by Bethany Bradley, a biogeographer, Michael Oppenheimer, a geoscientist, and David Wilcove, a conservation biologist, at Princeton’s Woodrow Wilson School, and will soon be published in the journal Global Change Biology.

The researchers assessed the relationship between climate change and the distribution of five prominent invasive plants in the western United States – known colloquially as the “kudzus of the West” – cheatgrass; spotted knapweed; yellow starthistle; tamarisk; and leafy spurge. Such plants are defined as invasive because they were brought into this country from other lands and now dominate and alter ecosystems in ways that threaten native wildlife, agriculture, and ranching. All have greatly expanded their ranges in recent decades in the western U.S., causing millions of dollars in damage to farmlands and rangelands. Invasive plants are increasingly expensive to control, and it is widely believed that global warming will make the problem worse.

But Bradley and her co-authors find that global warming may also reduce the competitiveness of some invasive plants if conditions become climatically unsuitable to the weeds, “creating opportunities for restoration in areas currently dominated by intractable invasive species,” according to the study.

The five species were selected in part because they represent the most problematic plants in the western U.S. The study authors created “bioclimatic envelope models,” wherein the authors identified where the invasive plant species occurred, and identified critical climate variables such as precipitation patterns and temperature patterns that are associated with the presence of the invasive plants under investigation. The authors then determined what combined set of climate variables best described the distribution of these weeds, and mapped all of the places in the U.S. where these climate conditions occur.

Developing such models is important because scientists can use them to assess how changing climate conditions might affect the distributions of invasive plants. Maps of how invasion risk is likely to change with global warming are also important for land managers designing long-term protocols for fighting invasive plants.

The researchers employed 10 atmosphere-ocean general circulation models (AOGCMs) that predict what climatic conditions in the West are likely to be in 2100 if emissions are not limited, and matched those predicted conditions to the climate conditions associated with each of the invasive plant species. The projected invasive species distributions for each of the models were added together to create a map of invasion risk under future climate conditions.

“Just as native species are expected to shift in range and relative competiveness with climate change,” the authors wrote, “the same should be expected of invasive species.”

Specifically, the researchers concluded that climate change is likely to expand invasion risk from yellow starthistle in California and Nevada – and lands currently occupied by invasive populations of the weed in California, Oregon and Washington are unlikely to become unsuitable for the species; hence, they have low potential for restoration. Tamarisk distribution, they found, is unlikely to be affected by climate change.

Cheatgrass, however, is likely to be affected by climate change, potentially moving northwards into parts of Idaho, Montana and Wyoming, but retreating in southern Nevada and Utah. And, according to Bradley and her co-authors, the impacts of climate change will likely shift spotted knapweed, currently distributed throughout the foothills of the Rocky Mountains and the Colorado Plateau, to higher elevations, leading to both expanded risk and restoration opportunities in part of Montana, Wyoming, Utah, and Colorado.

Leafy spurge, abundant in northern states west of the Mississippi River and some rangeland west of the Rockies, will likely retreat from some places in the face of climate change, creating restoration possibilities in Colorado, Nebraska, Iowa, and Minnesota – but potentially expanding into parts of Canada not included in the researchers’ study. In addition, the researchers found that leafy spurge is likely to retreat from Nebraska and parts of Oregon and Iowa, creating strong potential for restoration in these areas.

To better address the impacts of invasive species, the authors note, further modeling and experimental work is needed to determine which species will be able to occupy these sites if the invasive species are reduced or eliminated by climate change. Local native plants (the ones that were there prior to the arrival of the invasive species) may be unable to reoccupy these areas as a result of global warming. If local native plants cannot reoccupy the areas, then native plants from elsewhere in the West will need to be considered for restoration to prevent new invasive species from quickly invading these sites.

“The restoration opportunities associated with the retreat of currently intractable invasive species are vast in the western United States,” the authors wrote. “The uncertainties associated with these changes, as well as the unknown makeup of viable future vegetation… highlight a pressing need for integrated modeling, monitoring, and experimental work to better address the ecological consequences of climate change.”

“The question for policy makers and land managers is, ‘What do we want these lands to be?’” said Wilcove. “These lands will change, and we must decide now – before the window of opportunity closes - whether we do nothing or whether we intervene.”

“Governments need to reduce emissions quickly to avoid a variety of dangerous climate changes, Oppenheimer warned. “At the same time, it will be necessary to adapt to the inevitability of some warming. Proper management of ecosystems to minimize the damages is a key part of any effective adaptation strategy.”

Lucy Collister | alfa
Further information:
http://www.princeton.edu
http://www.wiley.com
http://www3.interscience.wiley.com/journal/121521769/abstract

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>