Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Increases Risk of Crop Slowdown in Next 20 Years

29.07.2014

The world faces a small but substantially increased risk over the next two decades of a major slowdown in the growth of global crop yields because of climate change, new research finds.

The authors, from Stanford University and the National Center for Atmospheric Research (NCAR), say the odds of a major production slowdown of wheat and corn even with a warming climate are not very high.


©UCAR, photo by Carlye Calvin. This image is freely available for media & nonprofit use.

A storm looms behind wheat fields in eastern Colorado, where recurrent drought has had major impacts on agriculture over the last 15 years.

But the risk is about 20 times more significant than it would be without global warming, and it may require planning by organizations that are affected by international food availability and price.

“Climate change has substantially increased the prospect that crop production will fail to keep up with rising demand in the next 20 years,” said NCAR scientist Claudia Tebaldi, a co-author of the study.

Stanford professor David Lobell said he wanted to study the potential impact of climate change on agriculture in the next two decades because of questions he has received from stakeholders and decision makers in governments and the private sector.

“I’m often asked whether climate change will threaten food supply, as if it’s a simple yes or no answer,” Lobell said. “The truth is that over a 10- or 20-year period, it depends largely on how fast the Earth warms, and we can’t predict the pace of warming very precisely. So the best we can do is try to determine the odds.”

Lobell and Tebaldi used computer models of global climate, as well as data about weather and crops, to calculate the chances that climatic trends would have a negative effect of 10 percent on yields of corn and wheat in the next 20 years.

This would have a major impact on food supply. Yields would continue to increase but the slowdown would effectively cut the projected rate of increase by about half at the same time that demand is projected to grow sharply.

They found that the likelihood of natural climate shifts causing such a slowdown over the next 20 years is only 1 in 200. But when the authors accounted for human-induced global warming, they found that the odds jumped to 1 in 10 for corn and 1 in 20 for wheat.

The study appears in this month’s issue of Environmental Research Letters. It was funded by the National Science Foundation (NSF), which is NCAR’s sponsor, and by the U.S. Department of Energy (DOE).

More crops needed worldwide

Global yields of crops such as corn and wheat have typically increased by about 1-2 percent per year in recent decades, and the U.N. Food and Agriculture Organization projects that global production of major crops will increase by 13 percent per decade through 2030—likely the fastest rate of increase during the coming century. However, global demand for crops is also expected to rise rapidly during the next two decades because of population growth, greater per-capita food consumption, and increasing use of biofuels.

Lobell and Tebaldi set out to estimate the odds that climate change could interfere with the ability of crop producers to keep up with demand. Whereas other climate research had looked at the crop impacts that were most likely, Lobell and Tebaldi decided to focus on the less likely but potentially more dangerous scenario that climate change would reduce yield growth by 10 percent or more.

The researchers used simulations available from an NCAR-based climate model (developed by teams of scientists with support from NSF and DOE), as well as several other models, to provide trends in temperature and precipitation over the next two decades for crop-intensive regions under a scenario of increasing carbon dioxide. They also used the same model simulations without human-caused increases in carbon dioxide to assess the same trends in a natural climate.

In addition, they ran statistical analyses to estimate the impacts of changes in temperature and precipitation on wheat and corn yields in various regions of the globe and during specific times of the year that coincide with the most important times of the growing seasons for those two crops.

The authors quantified the extent to which warming temperatures would correlate with reduced yields. For example, an increase of 1 degree Celsius (1.8 degrees Fahrenheit) would slow corn yields by 7 percent and wheat yields by 6 percent. Depending on the crop-growing region, the odds of such a temperature increase in the next 20 years were about 30 to 40 percent in simulations that included increases in carbon dioxide. In contrast, such temperature increases had a much lower chance of occurring in stimulations that included only natural variability, not human-induced climate change.

Although society could offset the climate impacts by planting wheat and corn in cooler regions, such planting shifts to date have not occurred quickly enough to offset warmer temperatures, the study warned. The authors also found little evidence that other adaptation strategies, such as changes in crop varieties or growing practices, would totally offset the impact of warming temperatures.

“Although further study may prove otherwise we do not anticipate adaptation being fast enough to significantly alter the near-term risks estimated in this paper,” they wrote.

“We can’t predict whether a major slowdown in crop growth will actually happen, and the odds are still fairly low,” said Tebaldi. “But climate change has increased the odds to the point that organizations concerned with food security or global stability need to be aware of this risk.”

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

About the article:

Title: Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades

Authors: David B. Lobell and Claudia Tebaldi

Publication: Environmental Research Letters

On the Web:

NCAR/UCAR news releases, images, and more:
www.ucar.edu/atmosnews

David Hosansky | newswise

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>