Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change may create price volatility in the corn market, say Stanford and Purdue researchers

23.04.2012
By the time today's elementary schoolers graduate from college, the U.S. corn belt could be forced to move to the Canadian border to escape devastating heat waves brought on by rising global temperatures.

If farmers don't move their corn north, the more frequent heat waves could lead to bigger swings in corn prices – "price volatility" – which cause spikes in food prices, farmers' incomes and the price livestock farmers and ethanol producers pay for corn.


America's No. 1 crop could see its prime growing region shift to the Canadian border or its price volatility increase sharply within 30 years. A new Stanford study points to climate change as the cause. Credit: Doug Wilson, Agricultural Research Service, USDA

A study published April 22 in the journal Nature Climate Change shows for the first time climate change's outsized influence on year-to-year swings in corn prices.

Researchers from Stanford and Purdue universities found that climate change's impact on corn price volatility could far outweigh the volatility caused by changing oil prices or government energy policies mandating biofuels production from corn and other crops.

"Frankly, I was surprised that climate had the largest effect of these three influences," said Noah Diffenbaugh, an assistant professor of environmental Earth system science at Stanford's School of Earth Sciences and a fellow at the Stanford Woods Institute for the Environment. "These are substantial changes in price volatility that come from relatively moderate global warming."

The study, based on economic, climatic and agricultural data and computational models, finds that even if climate change stays within the internationally recognized target limit of 3.6 degrees Fahrenheit above pre-industrial levels, the temperature changes could still make damaging heat waves much more common over the U.S. corn belt.

"Severe heat is the big hammer," Diffenbaugh said. "Even one or two degrees of global warming is likely to substantially increase heat waves that lead to low-yield years and more price volatility."

The researchers calculate that when climate change's effects are coupled with federal mandates for biofuel production, corn price volatility could increase sharply over the period from 2020 to 2040. Increasing heat waves will lead to low-yield years, and government-mandated corn sales to ethanol producers limit the market's ability to buffer against low-yield years.

"By limiting the ability of commodity markets to adjust to yield fluctuations, biofuels mandates work in exactly the wrong direction," said Thomas Hertel, a professor of agricultural economics at Purdue University who participated in the study.

"Our results suggest that energy policy decisions are likely to interact with climate change to affect corn price volatility, and that the market effect of a binding biofuel mandate is likely to intensify as the climate warms," Diffenbaugh said.

Diffenbaugh and Hertel also explored the potential of farmers to adapt to the changing climate. They found that, unless corn farmers increase their crops' heat tolerance by as much as 6 degrees Fahrenheit, the areas of high corn production would have to move northward from the current U.S. corn belt to near the Canadian border in order to avoid excessive heat extremes.

"Our goal was to explore the interacting influences of climate, energy markets and energy policy," said Diffenbaugh. "It is clear from our results that those policy decisions could strongly affect the impacts that climate change has on people. And, importantly, we also identify potential opportunities for reducing those impacts through adaptation."

This article was written by Rob Jordan of the Stanford Woods Institute for the Environment.

Rob Jordan | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>