Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New citrus variety released by UC Riverside is very sweet, juicy and low-seeded

12.04.2011
'KinnowLS' is university's eighth citrus variety developed in past 10 years

Juicy. Extremely Sweet. Visually attractive. Easy to peel. Low seeded. These are the fine qualities that mark 'KinnowLS,' the latest citrus variety released by researchers at the University of California, Riverside.

Large-sized for a mandarin, the fruit has an orange rind color. The rind is thin and extremely smooth. The 10-11 segments in each fruit are fleshy and deep orange in color.

'KinnowLS' (the LS is short for low seeded) is a mandarin selection developed by mutation breeding of the mandarin cultivar 'Kinnow,' a mid-to-late season maturing variety developed by UC Riverside nearly 100 years ago. While 'Kinnow' has 15-30 seeds per fruit, 'KinnowLS' has only 2-3 seeds per fruit. Rarely, individual 'KinnowLS' fruit may have 4-7 seeds.

"People who like very sweet fruit are going to find 'KinnowLS' to be very appealing," said Mikeal Roose, a professor of genetics in, and chair of, the Department of Botany and Plant Sciences, who developed 'KinnowLS' along with staff scientist Timothy Williams. "When other citrus varieties mature to reach the level of sweetness of 'KinnowLS,' their other qualities – such as rind texture – are in decline. Neither 'Kinnow' nor 'KinnowLS' suffer in this way."

Yet another attractive quality of 'KinnowLS' is that it can be grown in California's desert regions because the fruit, which matures during February through April, does well in hot climates.

'Kinnow' is the most important mandarin in the Punjab regions of India and Pakistan, where 'Kinnow' fruit trees constitute about 80 percent of all citrus trees.

"But the fruit, which is popular there, is seedy," Roose said. "Therefore, 'KinnowLS' has very good potential in this area of the world."

Growers in India and Pakistan will have to wait a few years, however, before 'KinnowLS' trees can strike roots there. Currently, plans are to distribute 'KinnowLS' budwood, starting June 2011, to only licensed nurseries in California. (In November 2010, UCR distributed a few trees to a handful of California nurseries for the sole purpose of creating a bigger budwood supply.) For three years, only California nurseries will be permitted to propagate 'KinnowLS.' Licenses for 'KinnowLS' propagation outside the United States will be issued thereafter.

'KinnowLS' will not arrive in U.S. produce aisles for at least five years.

"It generally takes about that long to propagate citrus trees," Roose said.

Citrus is grown by 'budding,' not by planting a seed. This is because trees grown from a citrus seed are often quite different from the mother tree and the trees may be fruitless for many years. To circumvent these problems, growers and researchers grow seedlings from citrus seeds and then tightly splice onto their rootstock seedling a small amount of material, called a bud, from a tree of the desired variety.

When a new variety is released, citrus nurseries get a few buds from which they make "mother" trees. Buds from these trees make many "increase" trees, and then buds from the increase trees are used to make the trees sold to growers.

"These cycles take time," Roose said. "After the grower plants trees, they do not have much fruit until the third year after planting."

Mutation breeding is a technique commonly used by plant scientists to produce useful and desired traits in crops – e.g., larger seeds, new colors, or sweeter fruits – that either cannot be found in nature or have been lost during evolution. The mutations – changes in the structure of genes – are artificially induced by treatment with certain physical or chemical agents. In nature, spontaneous mutations, which are mutations that occur naturally, occasionally take place; mutation breeding can speed this up.

Currently, UCR has 12 'KinnowLS' trees. Six other locations in California each have a dozen 'KinnowLS' trees also.

The development of 'KinnowLS' was funded by the California Citrus Research Board, the California Citrus Nursery Board and the UCR Agricultural Experiment Station.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: California' Citrus Kinnow fruit trees Riverside UCR fruit trees orange rind color

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>