Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New citrus variety released by UC Riverside is very sweet, juicy and low-seeded

12.04.2011
'KinnowLS' is university's eighth citrus variety developed in past 10 years

Juicy. Extremely Sweet. Visually attractive. Easy to peel. Low seeded. These are the fine qualities that mark 'KinnowLS,' the latest citrus variety released by researchers at the University of California, Riverside.

Large-sized for a mandarin, the fruit has an orange rind color. The rind is thin and extremely smooth. The 10-11 segments in each fruit are fleshy and deep orange in color.

'KinnowLS' (the LS is short for low seeded) is a mandarin selection developed by mutation breeding of the mandarin cultivar 'Kinnow,' a mid-to-late season maturing variety developed by UC Riverside nearly 100 years ago. While 'Kinnow' has 15-30 seeds per fruit, 'KinnowLS' has only 2-3 seeds per fruit. Rarely, individual 'KinnowLS' fruit may have 4-7 seeds.

"People who like very sweet fruit are going to find 'KinnowLS' to be very appealing," said Mikeal Roose, a professor of genetics in, and chair of, the Department of Botany and Plant Sciences, who developed 'KinnowLS' along with staff scientist Timothy Williams. "When other citrus varieties mature to reach the level of sweetness of 'KinnowLS,' their other qualities – such as rind texture – are in decline. Neither 'Kinnow' nor 'KinnowLS' suffer in this way."

Yet another attractive quality of 'KinnowLS' is that it can be grown in California's desert regions because the fruit, which matures during February through April, does well in hot climates.

'Kinnow' is the most important mandarin in the Punjab regions of India and Pakistan, where 'Kinnow' fruit trees constitute about 80 percent of all citrus trees.

"But the fruit, which is popular there, is seedy," Roose said. "Therefore, 'KinnowLS' has very good potential in this area of the world."

Growers in India and Pakistan will have to wait a few years, however, before 'KinnowLS' trees can strike roots there. Currently, plans are to distribute 'KinnowLS' budwood, starting June 2011, to only licensed nurseries in California. (In November 2010, UCR distributed a few trees to a handful of California nurseries for the sole purpose of creating a bigger budwood supply.) For three years, only California nurseries will be permitted to propagate 'KinnowLS.' Licenses for 'KinnowLS' propagation outside the United States will be issued thereafter.

'KinnowLS' will not arrive in U.S. produce aisles for at least five years.

"It generally takes about that long to propagate citrus trees," Roose said.

Citrus is grown by 'budding,' not by planting a seed. This is because trees grown from a citrus seed are often quite different from the mother tree and the trees may be fruitless for many years. To circumvent these problems, growers and researchers grow seedlings from citrus seeds and then tightly splice onto their rootstock seedling a small amount of material, called a bud, from a tree of the desired variety.

When a new variety is released, citrus nurseries get a few buds from which they make "mother" trees. Buds from these trees make many "increase" trees, and then buds from the increase trees are used to make the trees sold to growers.

"These cycles take time," Roose said. "After the grower plants trees, they do not have much fruit until the third year after planting."

Mutation breeding is a technique commonly used by plant scientists to produce useful and desired traits in crops – e.g., larger seeds, new colors, or sweeter fruits – that either cannot be found in nature or have been lost during evolution. The mutations – changes in the structure of genes – are artificially induced by treatment with certain physical or chemical agents. In nature, spontaneous mutations, which are mutations that occur naturally, occasionally take place; mutation breeding can speed this up.

Currently, UCR has 12 'KinnowLS' trees. Six other locations in California each have a dozen 'KinnowLS' trees also.

The development of 'KinnowLS' was funded by the California Citrus Research Board, the California Citrus Nursery Board and the UCR Agricultural Experiment Station.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: California' Citrus Kinnow fruit trees Riverside UCR fruit trees orange rind color

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>