Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New citrus variety released by UC Riverside is very sweet, juicy and low-seeded

'KinnowLS' is university's eighth citrus variety developed in past 10 years

Juicy. Extremely Sweet. Visually attractive. Easy to peel. Low seeded. These are the fine qualities that mark 'KinnowLS,' the latest citrus variety released by researchers at the University of California, Riverside.

Large-sized for a mandarin, the fruit has an orange rind color. The rind is thin and extremely smooth. The 10-11 segments in each fruit are fleshy and deep orange in color.

'KinnowLS' (the LS is short for low seeded) is a mandarin selection developed by mutation breeding of the mandarin cultivar 'Kinnow,' a mid-to-late season maturing variety developed by UC Riverside nearly 100 years ago. While 'Kinnow' has 15-30 seeds per fruit, 'KinnowLS' has only 2-3 seeds per fruit. Rarely, individual 'KinnowLS' fruit may have 4-7 seeds.

"People who like very sweet fruit are going to find 'KinnowLS' to be very appealing," said Mikeal Roose, a professor of genetics in, and chair of, the Department of Botany and Plant Sciences, who developed 'KinnowLS' along with staff scientist Timothy Williams. "When other citrus varieties mature to reach the level of sweetness of 'KinnowLS,' their other qualities – such as rind texture – are in decline. Neither 'Kinnow' nor 'KinnowLS' suffer in this way."

Yet another attractive quality of 'KinnowLS' is that it can be grown in California's desert regions because the fruit, which matures during February through April, does well in hot climates.

'Kinnow' is the most important mandarin in the Punjab regions of India and Pakistan, where 'Kinnow' fruit trees constitute about 80 percent of all citrus trees.

"But the fruit, which is popular there, is seedy," Roose said. "Therefore, 'KinnowLS' has very good potential in this area of the world."

Growers in India and Pakistan will have to wait a few years, however, before 'KinnowLS' trees can strike roots there. Currently, plans are to distribute 'KinnowLS' budwood, starting June 2011, to only licensed nurseries in California. (In November 2010, UCR distributed a few trees to a handful of California nurseries for the sole purpose of creating a bigger budwood supply.) For three years, only California nurseries will be permitted to propagate 'KinnowLS.' Licenses for 'KinnowLS' propagation outside the United States will be issued thereafter.

'KinnowLS' will not arrive in U.S. produce aisles for at least five years.

"It generally takes about that long to propagate citrus trees," Roose said.

Citrus is grown by 'budding,' not by planting a seed. This is because trees grown from a citrus seed are often quite different from the mother tree and the trees may be fruitless for many years. To circumvent these problems, growers and researchers grow seedlings from citrus seeds and then tightly splice onto their rootstock seedling a small amount of material, called a bud, from a tree of the desired variety.

When a new variety is released, citrus nurseries get a few buds from which they make "mother" trees. Buds from these trees make many "increase" trees, and then buds from the increase trees are used to make the trees sold to growers.

"These cycles take time," Roose said. "After the grower plants trees, they do not have much fruit until the third year after planting."

Mutation breeding is a technique commonly used by plant scientists to produce useful and desired traits in crops – e.g., larger seeds, new colors, or sweeter fruits – that either cannot be found in nature or have been lost during evolution. The mutations – changes in the structure of genes – are artificially induced by treatment with certain physical or chemical agents. In nature, spontaneous mutations, which are mutations that occur naturally, occasionally take place; mutation breeding can speed this up.

Currently, UCR has 12 'KinnowLS' trees. Six other locations in California each have a dozen 'KinnowLS' trees also.

The development of 'KinnowLS' was funded by the California Citrus Research Board, the California Citrus Nursery Board and the UCR Agricultural Experiment Station.

The University of California, Riverside ( is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:

Further reports about: California' Citrus Kinnow fruit trees Riverside UCR fruit trees orange rind color

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>