Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your Christmas tree has seven times more DNA than you do - time to map it

10.12.2009
Take a close look at your Christmas tree - it has seven times more genetic material (DNA) than you do!

Why this is so is still largely unknown, but now the DNA of the spruce is going to be mapped by Swedish researchers from Umeå Plant Science Center (a collaboration between the Swedish University of Agricultural Sciences (SLU) and Umeå University), the Royal Institute of Technology (KTH), and the Karolinska Institute (KI), with the aid of a SEK 75 million grant from the Knut and Alice Wallenberg Foundation.

Coniferous trees have dominated major parts of the earth for hundreds of millions of years. When primitive batrachians crawled around Carbon Age forests, they were surrounded by conifers. Conifers survived the geological disaster 250 million years ago that paved the way for the age of the dinosaurs. When the impact of a meteorite wiped out the dinosaurs, conifers lived on. Today conifers dominate major regions of the earth - the combined weight of all the people on earth is less than that of the conifers in Jämtland County in central Sweden.

Apparently conifers managed as early as 300 million years ago to create an extremely successful genetic make-up that has allowed them to dominate the globe, but what does it look like? All conifers have twelve chromosomes, but they are extremely large: a cell from a spruce or pine has seven times as much DNA as a human cell does. Why do conifers have so much DNA? Does it have to do with their having thrived for millions of years on earth, and do they really have more genes than you and I, or are their genes simply more 'diluted'? This is not known, but their enormous amount of DNA has entailed that scientists have not dared to tackle a mapping of the complete genome of coniferous trees.

Now a Swedish research team, consisting of scientists from Umeå Plant Science Center (UPSC), a research center that is run jointly by Umeå University and SLU, and from KTH and KI, both in Stockholm, will finally be addressing this huge challenge with the aid of a grant of SEK 75 million from the Knut and Alice Wallenberg Foundation.

The spruce is Sweden's ecologically and economically most important plant. Spruce dominates the forests of southern and central Sweden and is the most important raw material for the Swedish forestry industry.

"The genetics of the spruce are truly exciting," says the project director, Professor Pär Ingvarsson at UPSC. "Genetically, trees differ tremendously from each other, and while Swedish forest genetics has always been prominent, this constitutes a giant step forward in the work to achieve tree nursery material that is adapted to the very different conditions that prevail in our country, above all in the time of climate change we are facing."

"The fact that the Swedish spruce will be the first conifer to have its genome mapped is extremely important to both Swedish forestry research and the forestry industry," says Professor Ove Nilsson at UPSC, who chairs the project's steering group. "A complete mapping of the genes of the spruce will revolutionize Swedish tree research and enable us to make more efficient use of wood raw material."

"For example, it will provide us with the possibility of developing genetic tests for the various properties of trees, such as the fuel value of the wood, or the trees' frost resistance and resistance to diseases, just as the mapping of the human genome has made this possible in medicine," says Stefan Jansson, a professor at UPSC.

These scientists are now able to take on this challenge largely because DNA sequencing technology has been developed so extremely rapidly.

"It would have been impossible to tackle this project just a couple of years ago," says Professor Joakim Lundeberg, KTH. The government's major allocation to the Science for Life Laboratory, which is slated to be northern Europe's largest center for genome research, gives us access to this equipment, and the spruce project will be the Laboratory's first flagship project.

"Many other Swedish scientists will benefit from this project, so the eventual aggregate impact will be huge," says Jan Stenlid, a professor at SLU in Uppsala. "For instance, we will have an entirely new capacity to understand and thereby combat two major scourges for Swedish forestry, root rot and the pine weevil."

The project is projected to take four to five years, and besides the eight Swedish researchers - Björn Andersson, KI, Rishikesh Bhalerao, UPSC, Rosario Garcia Gil, UPSC, Pär Ingvarsson, UPSC, Stefan Jansson, UPSC, Joakim Lundeberg, KTH, Ove Nilsson, UPSC, and Björn Sundberg, UPSC - Canadian, Italian, and Belgian researchers will contribute to the project, which, as far we know, is the largest project in the world to tackle the species that has the largest DNA.

For further information please contact:

Ove Nilsson, mobile: +46 (0)70-286 90 82
ove.nilsson@genfys.slu.se
Pär Ingvarsson, mobile: +46 (0)70-848 59 77
par.ingvarsson@emg.umu.se
Stefan Jansson, mobile: +46 (0)70- 677 23 31
stefan.jansson@plantphys.umu.se
Joakim Lundberg, mobile: +46 (0)70-458 23 46
joakiml@biotech.kth.se
Pressofficer Carin Wrange; Carin.Wrange@adm.slu.se;+46-70 247 84 22

Ingemar Björklund | idw
Further information:
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>