Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your Christmas tree has seven times more DNA than you do - time to map it

10.12.2009
Take a close look at your Christmas tree - it has seven times more genetic material (DNA) than you do!

Why this is so is still largely unknown, but now the DNA of the spruce is going to be mapped by Swedish researchers from Umeå Plant Science Center (a collaboration between the Swedish University of Agricultural Sciences (SLU) and Umeå University), the Royal Institute of Technology (KTH), and the Karolinska Institute (KI), with the aid of a SEK 75 million grant from the Knut and Alice Wallenberg Foundation.

Coniferous trees have dominated major parts of the earth for hundreds of millions of years. When primitive batrachians crawled around Carbon Age forests, they were surrounded by conifers. Conifers survived the geological disaster 250 million years ago that paved the way for the age of the dinosaurs. When the impact of a meteorite wiped out the dinosaurs, conifers lived on. Today conifers dominate major regions of the earth - the combined weight of all the people on earth is less than that of the conifers in Jämtland County in central Sweden.

Apparently conifers managed as early as 300 million years ago to create an extremely successful genetic make-up that has allowed them to dominate the globe, but what does it look like? All conifers have twelve chromosomes, but they are extremely large: a cell from a spruce or pine has seven times as much DNA as a human cell does. Why do conifers have so much DNA? Does it have to do with their having thrived for millions of years on earth, and do they really have more genes than you and I, or are their genes simply more 'diluted'? This is not known, but their enormous amount of DNA has entailed that scientists have not dared to tackle a mapping of the complete genome of coniferous trees.

Now a Swedish research team, consisting of scientists from Umeå Plant Science Center (UPSC), a research center that is run jointly by Umeå University and SLU, and from KTH and KI, both in Stockholm, will finally be addressing this huge challenge with the aid of a grant of SEK 75 million from the Knut and Alice Wallenberg Foundation.

The spruce is Sweden's ecologically and economically most important plant. Spruce dominates the forests of southern and central Sweden and is the most important raw material for the Swedish forestry industry.

"The genetics of the spruce are truly exciting," says the project director, Professor Pär Ingvarsson at UPSC. "Genetically, trees differ tremendously from each other, and while Swedish forest genetics has always been prominent, this constitutes a giant step forward in the work to achieve tree nursery material that is adapted to the very different conditions that prevail in our country, above all in the time of climate change we are facing."

"The fact that the Swedish spruce will be the first conifer to have its genome mapped is extremely important to both Swedish forestry research and the forestry industry," says Professor Ove Nilsson at UPSC, who chairs the project's steering group. "A complete mapping of the genes of the spruce will revolutionize Swedish tree research and enable us to make more efficient use of wood raw material."

"For example, it will provide us with the possibility of developing genetic tests for the various properties of trees, such as the fuel value of the wood, or the trees' frost resistance and resistance to diseases, just as the mapping of the human genome has made this possible in medicine," says Stefan Jansson, a professor at UPSC.

These scientists are now able to take on this challenge largely because DNA sequencing technology has been developed so extremely rapidly.

"It would have been impossible to tackle this project just a couple of years ago," says Professor Joakim Lundeberg, KTH. The government's major allocation to the Science for Life Laboratory, which is slated to be northern Europe's largest center for genome research, gives us access to this equipment, and the spruce project will be the Laboratory's first flagship project.

"Many other Swedish scientists will benefit from this project, so the eventual aggregate impact will be huge," says Jan Stenlid, a professor at SLU in Uppsala. "For instance, we will have an entirely new capacity to understand and thereby combat two major scourges for Swedish forestry, root rot and the pine weevil."

The project is projected to take four to five years, and besides the eight Swedish researchers - Björn Andersson, KI, Rishikesh Bhalerao, UPSC, Rosario Garcia Gil, UPSC, Pär Ingvarsson, UPSC, Stefan Jansson, UPSC, Joakim Lundeberg, KTH, Ove Nilsson, UPSC, and Björn Sundberg, UPSC - Canadian, Italian, and Belgian researchers will contribute to the project, which, as far we know, is the largest project in the world to tackle the species that has the largest DNA.

For further information please contact:

Ove Nilsson, mobile: +46 (0)70-286 90 82
ove.nilsson@genfys.slu.se
Pär Ingvarsson, mobile: +46 (0)70-848 59 77
par.ingvarsson@emg.umu.se
Stefan Jansson, mobile: +46 (0)70- 677 23 31
stefan.jansson@plantphys.umu.se
Joakim Lundberg, mobile: +46 (0)70-458 23 46
joakiml@biotech.kth.se
Pressofficer Carin Wrange; Carin.Wrange@adm.slu.se;+46-70 247 84 22

Ingemar Björklund | idw
Further information:
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>