Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Characterization of stink bug saliva proteins opens door to controlling pests

27.02.2014

Brown marmorated stink bugs cause millions of dollars in crop losses across the United States because of the damage their saliva does to plant tissues. Researchers at Penn State have developed methods to extract the insect saliva and identify the major protein components, which could lead to new pest control approaches.

"Until now, essentially nothing was known about the composition of stink bug saliva, which is surprising given the importance of these insects as pests and the fact that their saliva is the primary cause of feeding injury to plants and crop losses," said Gary Felton, professor and head of the Department of Entomology. "Other than using synthetic pesticides, there have been few alternative approaches to controlling these pests. By identifying the major protein components of saliva, it now may be possible to target the specific factors in saliva that are essential for their feeding and, therefore, design new approaches for controlling stink bugs."


Brown marmorated stink bugs have caused millions in crop losses across the United States as a result of the damage their saliva does to plant tissues during feeding. Researchers at Penn State have developed methods for extracting the saliva of these insects and have identified the major protein components of this saliva.

Credit: Nick Sloff, Penn State

The team reported its results in today's (Feb. 26) issue of PLOS ONE.

According to Felton, stink bugs produce two types of saliva that are required for successful feeding. Watery saliva helps stink bugs to digest their food. Sheath saliva surrounds stink bugs' mouthparts and hardens to prevent spillage of sap during feeding. The hardened "sheath" remains attached to the plant when the insect is finished feeding.

"Unlike a chewing insect, which causes damage by removing plant tissue, stink bugs pierce plant tissue and suck nutrients from the plant," said Michelle Peiffer, research support assistant. "During this process, stink bugs also deposit saliva onto the plant. The interaction between this saliva and the plant is what causes the cosmetic and physiological changes that make crops unmarketable."

To extract the two types of saliva from brown marmorated stink bugs, Felton and Peiffer first collected adult bugs from homes and fields in central Pennsylvania and maintained them in their laboratory.

The researchers chilled the insects on ice. As the insects returned to room temperature, their watery saliva was secreted from the tips of their beaks. The team collected this saliva, processed it and analyzed it for protein content.

To collect sheath saliva, the scientists placed organic grape tomatoes in the cages. After two days of stink bug feeding, they removed the tomatoes from the cages and used forceps to extract the hardened sheaths from the surfaces of the tomatoes. They then processed and analyzed the sheaths for protein content.

"We found that the watery saliva and the sheath saliva have distinct protein profiles," Felton said. "In other words, we did not find any proteins in common between the two."

Consistent with a role in digestion, the team found that watery saliva contains several digestive proteins, including amylases, proteases and an esterase.

In the sheath saliva, the researchers found peroxidase, suggesting that this protein could be involved in sheath formation. In addition, they found a large number of proteins from tomato.

"These results reveal that the protein composition of the sheath is a mixture of insect- and plant-derived proteins," Felton said. "We used extraordinary precaution to avoid disrupting tomato tissues during the collection of the sheaths, so we do not believe that the composition of tomato proteins in the sheath material is a spurious artifact of our collection methods, but rather it represents the natural coalescing of insect- and plant-derived proteins that occurs during formation of the sheath and subsequent feeding. These initial findings suggest that sheath saliva may elicit a plant self-protection response."

According to the scientists, the methods they developed to extract the saliva and to analyze the proteins should be generally applicable for any species of stink bug.

In the future, the team plans to use a genetic approach to test the function of individual proteins in the saliva to determine their function and essentiality to the feeding process.

"By understanding the specific details of feeding and the damage it causes, researchers can begin to develop targeted control methods for these pests," Peiffer said. 

Support for this research was provided by the U.S. Department of Agriculture's National Institute of Food and Agriculture specifically, the Coordinated Agricultural Project of the Specialty Crop Research Initiative. The Coordinated Agricultural Project includes more than 50 researchers from 10 institutions and is led by Tracy Leskey of the U.S. Department of Agriculture's Agricultural Research Service.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>