Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Characterization of stink bug saliva proteins opens door to controlling pests

27.02.2014

Brown marmorated stink bugs cause millions of dollars in crop losses across the United States because of the damage their saliva does to plant tissues. Researchers at Penn State have developed methods to extract the insect saliva and identify the major protein components, which could lead to new pest control approaches.

"Until now, essentially nothing was known about the composition of stink bug saliva, which is surprising given the importance of these insects as pests and the fact that their saliva is the primary cause of feeding injury to plants and crop losses," said Gary Felton, professor and head of the Department of Entomology. "Other than using synthetic pesticides, there have been few alternative approaches to controlling these pests. By identifying the major protein components of saliva, it now may be possible to target the specific factors in saliva that are essential for their feeding and, therefore, design new approaches for controlling stink bugs."


Brown marmorated stink bugs have caused millions in crop losses across the United States as a result of the damage their saliva does to plant tissues during feeding. Researchers at Penn State have developed methods for extracting the saliva of these insects and have identified the major protein components of this saliva.

Credit: Nick Sloff, Penn State

The team reported its results in today's (Feb. 26) issue of PLOS ONE.

According to Felton, stink bugs produce two types of saliva that are required for successful feeding. Watery saliva helps stink bugs to digest their food. Sheath saliva surrounds stink bugs' mouthparts and hardens to prevent spillage of sap during feeding. The hardened "sheath" remains attached to the plant when the insect is finished feeding.

"Unlike a chewing insect, which causes damage by removing plant tissue, stink bugs pierce plant tissue and suck nutrients from the plant," said Michelle Peiffer, research support assistant. "During this process, stink bugs also deposit saliva onto the plant. The interaction between this saliva and the plant is what causes the cosmetic and physiological changes that make crops unmarketable."

To extract the two types of saliva from brown marmorated stink bugs, Felton and Peiffer first collected adult bugs from homes and fields in central Pennsylvania and maintained them in their laboratory.

The researchers chilled the insects on ice. As the insects returned to room temperature, their watery saliva was secreted from the tips of their beaks. The team collected this saliva, processed it and analyzed it for protein content.

To collect sheath saliva, the scientists placed organic grape tomatoes in the cages. After two days of stink bug feeding, they removed the tomatoes from the cages and used forceps to extract the hardened sheaths from the surfaces of the tomatoes. They then processed and analyzed the sheaths for protein content.

"We found that the watery saliva and the sheath saliva have distinct protein profiles," Felton said. "In other words, we did not find any proteins in common between the two."

Consistent with a role in digestion, the team found that watery saliva contains several digestive proteins, including amylases, proteases and an esterase.

In the sheath saliva, the researchers found peroxidase, suggesting that this protein could be involved in sheath formation. In addition, they found a large number of proteins from tomato.

"These results reveal that the protein composition of the sheath is a mixture of insect- and plant-derived proteins," Felton said. "We used extraordinary precaution to avoid disrupting tomato tissues during the collection of the sheaths, so we do not believe that the composition of tomato proteins in the sheath material is a spurious artifact of our collection methods, but rather it represents the natural coalescing of insect- and plant-derived proteins that occurs during formation of the sheath and subsequent feeding. These initial findings suggest that sheath saliva may elicit a plant self-protection response."

According to the scientists, the methods they developed to extract the saliva and to analyze the proteins should be generally applicable for any species of stink bug.

In the future, the team plans to use a genetic approach to test the function of individual proteins in the saliva to determine their function and essentiality to the feeding process.

"By understanding the specific details of feeding and the damage it causes, researchers can begin to develop targeted control methods for these pests," Peiffer said. 

Support for this research was provided by the U.S. Department of Agriculture's National Institute of Food and Agriculture specifically, the Coordinated Agricultural Project of the Specialty Crop Research Initiative. The Coordinated Agricultural Project includes more than 50 researchers from 10 institutions and is led by Tracy Leskey of the U.S. Department of Agriculture's Agricultural Research Service.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>