Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Changing Climate May Make 'Super Weed' Even More Powerful

Researchers at the University of Delaware have discovered a new reason why the tall, tasseled reed Phragmites australis is one of the most invasive plants in the United States. The UD research team found that Phragmites delivers a one-two chemical knock-out punch to snuff out its victims, and the poison becomes even more toxic in the presence of the sun's ultraviolet rays.

Researchers at the University of Delaware have discovered a new reason why the tall, tasseled reed Phragmites australis is one of the most invasive plants in the United States.

The UD research team found that Phragmites delivers a one-two chemical knock-out punch to snuff out its victims, and the poison becomes even more toxic in the presence of the sun's ultraviolet rays.

The study, which is published in the June issue of the scientific journal Plant Signaling & Behavior, is believed to be the first to report the effects of UV-B radiation on plant allelopathy, the production of toxins by a plant to ward off encroachment by neighboring plants.

The authors include Thimmaraju Rudrappa, a former postdoctoral researcher at UD who is now a research scientist at the DuPont Company; Harsh Bais, assistant professor of plant and soil sciences; Yong Seok Choi, postdoctoral researcher in the Department of Chemical Engineering; Delphis Levia and David R. Legates, both associate professors in the Department of Geography; and Kelvin Lee, Gore Professor of Engineering and director of the Delaware Biotechnology Institute.

The research was conducted in Delaware wetlands and in Bais's lab at the Delaware Biotechnology Institute, a major center for life sciences research at the University of Delaware.

“The toxin secreted by Phragmites is degraded by sunlight -- ultraviolet rays -- and causes severe deleterious effects on other native plants,” Bais said.

“Our research also addresses the growing questions of increased UV-B incidences because of global warming and its ultimate effect on plants. In this case, an invasive plant is accidentally utilizing the changed global conditions for its survival and invasion,” Bais noted.

Two years ago, Bais led a study which discovered that Phragmites actively secretes gallic acid to kill off plants and take over new turf. Gallic acid, also known as 3,4,5-trihydroxybenzoic acid, is used for tanning leather, making dyes and inks, and formulating astringents, among other applications.

In this research, the scientists found that the gallic acid released by Phragmites is degraded by ultraviolet light to produce another toxin, mesoxalic acid, effectively hitting susceptible plants and seedlings with a double-whammy.

The mesoxalic acid triggers a similar “cellular death cascade” in victim plants as gallic acid does, Bais said, destroying the tubulin and actin, the structural protein in the roots, within minutes of exposure.

The scientific team detected the biological concentrations of mesoxalic acid in Delaware wetlands, in stands of both exotic and native Phragmites australis. The study highlights the persistence of the photo-degraded phytotoxin, particularly potent in the exotic species of the plant, and its enhanced effects against the native species of Phragmites, which is becoming increasingly endangered in the United States.

Walnut trees, pine trees, ferns and sunflowers are among the plants that release harmful chemicals to prevent other plants from growing too close to them.

However, Phragmites uses this strategy not so much to keep other plants away, but to aggressively conquer them and invade new territory, Bais said.

Funding for the project was provided by the University of Delaware Research Foundation.

Tracey Bryant | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>