Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canna can: Ornamental eliminates pollutants from stormwater runoff

14.12.2009
Perennials, wetland plants compared for ability to remove harmful nitrogen, phosphorous

Rapid population growth and urbanization have raised concerns over stormwater runoff contamination. Studies on watersheds indicate that excess nutrients, specifically nitrate–nitrogen and soluble reactive phosphorus are found in stormwater runoff in many new urban areas.

These pollutants degrade water quality and have an impact on the downstream ecosystem by contributing to the growth and decomposition of oxygen-depleting microorganisms.

A research team recently used a nutrient recirculation system (NRS) to assess the ability of four ornamental and three wetland plant species to remove nitrogen and phosphorous from stormwater runoff. The study showed that canna is a promising ornamental species for stormwater mitigation, and harvesting the aboveground biomass of canna can effectively remove nitrogen and phosphorous from the treatment system.

A variety of stormwater treatment technologies such as constructed wetlands and retention ponds have been developed in response to increasing regulatory pressures, but water quality issues are still found in many stormwater treatment structures. To meet increasingly rigorous EPA regulations, significant nitrogen and phosphorous reductions are necessary to improve water quality before it is discharged into the ecosystem from stormwater retention structures.

A relatively new technique using floating wetlands (also called "floating islands") for stormwater improvement has been tested in a wastewater treatment pond and a laboratory-scale constructed wetland; the results have suggested that the use of floating systems can increase mitigation capacity and provide efficient nitrogen and phosphorous removal in small treatment structures in urban areas. When ornamental plants are added to floating wetland systems, the benefits can be both aesthetic and environmental.

In a study published in a recent issue of the journal HortScience, a research team headed by Yan Chen of Louisiana State University's Hammond Research Station, analyzed the nutrient removal abilities of herbaceous perennial ornamentals (canna, iris, calla lily, and dwarf papyrus) compared with those of wetland plants (arrow arum, pickerelweed, and bulltongue arrowhead) in three experiments. The nutrient recirculation system (NRS) was filled with a nutrient solution with total nitrogen (N) and phosphorous (P) concentrations of 11.3 and 3.1 mg/liter, respectively, to simulate high levels of nutrient contaminations in stormwater.

The results showed that 'Australia' canna had the greatest water consumption, total biomass production, and aboveground nitrogen and phosphorous content, followed by pickerelweed. 'Golden Fleece' iris had higher tissue nitrogen concentrations than canna, but much lower biomass production. Dwarf papyrus had similar total biomass as pickerelweed, but less shoot biomass. Nitrogen and phosphorous removed from the NRS units planted with canna (98.7% N and 91.8% P) were higher than those planted with iris and arrow arum (31.6% and 31.5% N, and 38.5% and 26.3% P, respectively). NRS units planted with dwarf papyrus had similar nutrient recovery rate as pickerelweed, but much less total N and P were removed as a result of less water consumption. The NRS units planted with calla lily had lower nutrient removal than canna and pickerelweed.

Results from the study suggest that ornamental canna has the potential to be used as mitigation plants in urban stormwater floating biofiltration treatment. Because canna is a perennial plant and allocates the majority of its biomass to shoots, it can be harvested regularly, offering consistent removal of biomass from the treatment system. Chen noted that more research needs to be done to evaluate factors that might affect its application, such as "nitrogen and phosphorous loading and hydraulic conditions, planting densities, poly culture, harvesting frequency, and growth maintenance techniques."

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/6/1704

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>