Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Down on the Cacao Farm: Sloths Thrive at Chocolate's Source

Like many Neotropical fauna, sloths are running out of room to maneuver.

As forests in South and Central America are cleared for agriculture and other human uses, populations of these arboreal leaf eaters, which depend on large trees for both food and refuge, can become isolated and at risk. But one type of sustainable agriculture, shade grown cacao plantations, a source of chocolate, could become critical refuges and bridges between intact forests for the iconic animals.

In an ongoing study in Costa Rica, wildlife biologists from the University of Wisconsin-Madison are using a complex of intact tropical forest, pasture, banana and pineapple plantations -- all connected by a large shade-grown cacao farm -- as a field laboratory to explore the ecology of two species of sloths in a rapidly changing environment.

“We know a lot about sloth physiology,” says Jonathan Pauli, a UW-Madison assistant professor of wildlife ecology who, with colleague Zach Peery, has established a sloth study on a private cacao farm in rural Costa Rica. “But when it comes to sloth ecology and behavior, we know almost nothing. It's a giant black box.”

But some of that mystery is now being peeled away as studies by the Wisconsin team of both the brown-throated three-toed sloth and Hoffmann’s two-toed sloth, two fairly common species, are yielding new insights into their mating habits and how the animals transit the landscape.

The fact that sloths require forested habitat and are sedentary makes them vulnerable to the deforestation common to many parts of Central and South America, notes Peery, also a UW-Madison assistant professor of wildlife ecology. “Once a tract of tropical forest has been cleared, sloths have relatively little capacity to seek out new habitats.”

The setting Pauli and Peery are using to study sloths is increasingly representative of the Central American landscape. It is a mix of tropical forest, pasture, banana and pineapple plantations with a large organic cacao operation as a hub. As far as sloths go, the fields where bananas and pineapples are grown may as well be deserts, Pauli says: “Sloths don't go there. They just don't move through it.”

But the shade-grown cacao plantation, with its tall trees and network of cables for moving the pods that ultimately become chocolate, seems to be a de facto refuge and transit hub for the two- and three-toed sloths.

“Because of the diverse overstory of native trees, the cacao farm appears to provide excellent habitat for both species of sloths,” explains Peery.

Sloths also turn up in the few relic trees in pastures adjacent to the cacao farm, and the Wisconsin researchers hope to find out if the animals are using that habitat as spillover. “And then, of course, we want to compare sloth populations in cacao to populations in intact tropical forests to see if cacao provides habitat that is of as high of a quality as their natural forests,” Peery says.

While Pauli and Peery are conducting some of the baseline research needed to understand the behavioral and ecological proclivities of the two sloth species, they also seek to inform how land use in the Neotropics can affect animals like sloths that depend on trees for their survival.

The questions we hope to address, says Pauli, relate to the landscape -- the forests, pastures and cacao farms – and how the animals exploit the available habitat. “How do they compete in these environments? What are the limits to the resources? How do they partition into these different kinds of habitats?”

To flesh out sloth ecological parameters, however, requires a better basic understanding of sloth behavior, knowledge the Wisconsin group is now beginning to accumulate.

For example, in a study to be published in the journal Animal Behavior in September, Peery and Pauli describe the mating system of Hoffmann’s two-toed sloth and show that, unlike many other animals, the females tend to disperse from their home range and that the breeding territories of males can slightly overlap, with males tolerating competitors on the fringes but excluding them, sometimes violently, from the core. And Hoffmann’s two-toed sloths of both sexes seem to have multiple partners as well. “They’re more promiscuous than previously thought,” notes Pauli. “We see a much more flexible system of multiple matings.”

In addition to contributing to the store of basic sloth knowledge, the work of the Wisconsin researchers should help wildlife and land managers in the Neotropics make sound decisions to better balance development and conservation.

“Beyond the basic science, understanding how shade-grown agriculture can benefit sensitive tropical animals such as sloths is highly relevant, considering the ongoing and rapid loss of biodiversity in the Neotropics," notes Pauli. "What kinds of ecological services can these already altered landscapes provide? Can we mitigate future biodiversity loss with a greater emphasis on shade-grown agricultural systems than crops grown in monocultures? That's the future we're facing.”

Because of their sedentary nature and their dependence on forest, sloths can be viewed as an “umbrella species,” says Peery. “Protecting sloths could indirectly protect many other animal species in tropical forests that are harder to measure and study.”

The curious thing about sloths, which are widespread in both Central and South America, is that they are highly successful in intact forests despite their iconic lackadaisical mode of locomotion.

“It hardly seems like a recipe for success and, in fact one 18th century biologist wrote that sloths were ‘one defect away’ from disappearing from the Earth altogether,” Peery relates. “Clearly that biologist was wrong as sloths are an extremely successful taxon. Studying the reason why is fascinating.”

Terry Devitt (608) 262-8282,

Terry Devitt | Newswise Science News
Further information:

Further reports about: Cacao Farm Neotropics Sloths Source UW-Madison pineapple plantations tropical forest

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>