Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bt sweet corn can reduce insecticide use

07.10.2013
A new study finds that genetically modified sweet corn is better for the environment and safer for farm workers

Since 1996, corn containing a gene that allows it to create a protein that is toxic to certain insects, yet safe for human consumption, has been grown in the United States.

However, most of this "Bt corn" has been used for animal feed or processed into corn meal, starch, or other products. Although varieties of sweet corn (corn on the cob) have existed since the late 1990s, relatively few acres have been planted.

Due to pressure from activist groups, some grocery stores have refused to carry Bt sweet corn. However, a new study published in the Journal of Economic Entomology suggests that Bt sweet corn is better for the environment because it requires fewer pesticide applications than conventional corn.

"Our data suggest that using Bt sweet corn will dramatically reduce the use of traditional insecticides," the authors wrote. "Based on the performance of Bt field corn, growers should realize increased profits and there will be less risk to nontarget organisms, including natural enemies that help suppress pest densities."

The study, "Multi-State Trials of Bt Sweet Corn Varieties for Control of the Corn Earworm (Lepidoptera: Noctuidae)," analyzed the performance of Bt sweet corn, comparing its rate of infestation and marketability to genetically identical varieties that lacked Bt proteins. In 2010 and 2011, sweet corn trials were conducted in New York, Minnesota, Maryland, Ohio and Georgia, locations that differ in climate, management practices and pest pressure. The authors found that for pest management of the corn earworm, Bt sweet corn consistently performed better than its non-Bt counterparts, even those that were sprayed with conventional insecticides.

"Across multiple states and multiple years, Bt sweet corn performed better and required fewer sprays to meet market standards," said Cornell entomology professor Anthony Shelton. "One of the most spectacular examples occurred in New York plots in 2010: the Bt sweet corn had 99 to 100 percent marketable ears without any sprays and, even with eight conventional insecticide sprays, the non-Bt corn had only 18 percent marketable ears. This wasn't much better than the 6 percent marketable ears produced in the plots that received no sprays at all."

The authors predict that growers could realize increased profits with Bt sweet corn because of lower inputs and higher marketability, while simultaneously conserving populations of beneficial insects that keep damaging pests at bay.

"The use of Bt vegetables could significantly reduce the use of conventional insecticides and, in turn, reduce occupational and environmental risks that arise from intensive insecticide use," Shelton said.

Journalists who would like an advanced copy of the article should write to rlevine@entsoc.org.

The Journal of Economic Entomology is published by the Entomological Society of America, the largest organization in the world serving the professional and scientific needs of entomologists and people in related disciplines. Founded in 1889, ESA today has more than 6,500 members affiliated with educational institutions, health agencies, private industry, and government. Members are researchers, teachers, extension service personnel, administrators, marketing representatives, research technicians, consultants, students, and hobbyists. For more information, visit http://www.entsoc.org.

Richard Levine | EurekAlert!
Further information:
http://www.entsoc.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>