Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing precision farming to open field crops

19.09.2013
New system unifies profitable farming and environmental protection

How much water and fertilizer needs agricultural land for a successful harvest? Which nutrients are in the soil, which ones are lacking? ttz Bremerhaven and nine partners of the EU-funded project “OPTIFERT” present the development of a fully integrated on-demand fertigation system.


A unit of three chips for the measurement of NO3, NH4, K and PO4 (chip size 16 mm x 26 mm).
Foto: OPTIFERT Projekt


OPTIFERT mixing and dosing unit at the test site.
Foto: OPTIFERT Projekt

A soil nutrient sensor for the combined measurement of macronutrients at the field will correct the required crop growth model embedded in a fertigation software. The calculated fertilizer requirements will be delivered by a mixing and dosing unit specifically developed for open field crops.

In modern agriculture the amount of nutrients in soil is commonly adjusted by the application of fertilizers. The fertilizer dose has to be carefully adapted to the plant demands, since under-supply as well as over-supply lead to reduced yield. In addition, excessive use seriously harms the environment if fertilizers are not taken up by crops but get washed into ground water. In order to apply the appropriate amount of fertilizers, precise knowledge of nutrient concentrations in the soil and plant needs is required.

At the moment open field crops are fertilized using slow-dissolving solid fertilizer, applied while sowing in an experience-based quantity. Once the fertilizer is applied, the farmer has no control on the rate in which it is dissolved and so when it is available for the plants, or has the possibility of correcting the dose during the growth of the crop.

A system for calculating and applying on-demand fertilizers in open field crops, together with a fast and simple method for the routine surveillance of these nutrients is not yet available. “A system like this can also help us farmers to save time. We can control it with the computer in our office, and that way we have more time to do other things equally important.” Frank Hausmann, Farm Manager at the OPTIFERT test site.

Fertigation system comes with three modules

The full fertigation system contains three modules: composed of first: A soil nutrient sensor system for the combined measurement of NO3, NH4, K and PO4 at the field. For the measurement, a soil sample is suspended in a universal extraction liquid. After filtration, the amount of dissolved nutrients is measured in this liquid. In this way, only a single extraction procedure followed by a single measurement is required, minimizing the work for the generation of nutrient concentration maps and depth profiles.

Second: A software system which will receive the sensor data and process it together with crop growth models and weather data to calculate the required amount of fertilizers for each growth stage.

Third: A mixing and dosing unit, designed specifically for the requirements of an open field, and prepared to dissolve any needed fertilizer combination. The dosing unit can be coupled with any standard irrigation system, adapting the dose not only to the required amount of nutrients for each crop period but also to dynamically adapt to the variation of irrigation rate.

Project results

The three developed prototypes have been tested in a corn field in Brandenburg, Germany, during the season 2013. 25 Ha test site in this field has been fertigated using the OPTIFERT prototypes. The soil and plants have been monitored and analysed periodically during the whole season, as well as neighbour 25Ha reference test, which was fertilized under standard practice. Biomass samples taken at the end of August show 9% yield increase on the OPTIFERT test site. The performance of prototypes and test field have proven satisfactory.

The following partners are involved in the OPTIFERT project. Research partners: Vienna University of Technology (Austria), University of Bremen (Germany), University of Warmia and Mazury (Olsztyn, Poland), ttz Bremerhaven (Germany). Industrial partners: Pessl Instruments GmbH (Austria), Integrated Microsystems Austria GmbH (Austria), Soil Moisture Sense LTD (Great Britain), Hydro-Air GmbH (Germany), Agrargesellschaft "Niederer Fläming" mbH Petkus (Germany).

Movie about the project on euronews/futuris: Intelligent irrigation: growing green http://www.ttz-bremerhaven.de/en/research/environment/research-projects/1120-optifert.html

ttz Bremerhaven is an innovative provider of research services and operates in the field of application-oriented research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health.

Media Contact:
Christian Colmer
Head of Communications
ttz Bremerhaven
Fischkai 1
D-27572 Bremerhaven (Germany)
Tel.: +49 (0)471 80934 903
Fax: +49 (0)471 4832 129
ccolmer@ttz-bremerhaven.de
www.ttz-bremerhaven.de
www.facebook.com/ttzBremerhaven
www.twitter.com/ttzBremerhaven
www.xing.com/companies/ttzbremerhaven

Christian Colmer | idw
Further information:
http://www.optifert.eu/
http://www.ttz-bremerhaven.de

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>