Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing Better Grapes a Step Closer to Reality

24.03.2010
Grapes are one of the world’s most economically important fruit crops, but the woody perennial takes three years to go from seed to fruit, and that makes traditional breeding expensive and time-consuming.

A team of Agricultural Research Service (ARS) researchers has found a way to speed things up by developing a way to identify genetic markers in the grapevine’s genome that can be linked with specific traits, such as fruit quality, environmental adaptation, and disease and pest resistance.

Computational biologist Doreen Ware, geneticists Edward Buckler and Charles Simon, and research leader Gan-Yuan Zhong have developed a relatively fast and inexpensive way to identify genetic markers not only in grapes, but also in other crops by using modern sequencing approaches. Ware and Buckler work at the ARS Robert W. Holley Center for Agriculture and Health in Ithaca, N.Y.; Simon works at the ARS Plant Genetic Resources Unit at Geneva, N.Y., and Zhong is at the ARS Grape Genetics Research Unit, also at Geneva.

The researchers used the technology to sequence representative portions of the genomes from 10 cultivated grape varieties, six wild varieties and the clone of Pinot Noir originally sequenced by scientists in 2007. They developed filters that allowed them to make corrections for common sequencing errors, and discovered thousands of high-quality single nucleotide polymorphisms, or SNPS, which are genetic markers that can serve as signposts for showing how plants are related to each other.

They then used 9,000 of those SNPs in a custom-designed assay to examine DNA patterns at defined points along each cultivar’s genome. They found the SNPS contained enough data to identify the relationships and geographic origins of the cultivars. The work was published in PLOS One.

Improved technology is expected to make it possible to one day sequence the entire genomes of large numbers of grapes. But in the meantime, the work will help researchers identify portions of the grape genome where they can find genes that confer desirable traits, offering better information for breeders developing new varieties. The technique also should make it easier to identify the origins of other types of plants, characterize relationships in other plant collections, and accelerate genetic mapping efforts in a number of crop species.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture. The research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Dennis O'Brien | Newswise Science News
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>