Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing Better Grapes a Step Closer to Reality

24.03.2010
Grapes are one of the world’s most economically important fruit crops, but the woody perennial takes three years to go from seed to fruit, and that makes traditional breeding expensive and time-consuming.

A team of Agricultural Research Service (ARS) researchers has found a way to speed things up by developing a way to identify genetic markers in the grapevine’s genome that can be linked with specific traits, such as fruit quality, environmental adaptation, and disease and pest resistance.

Computational biologist Doreen Ware, geneticists Edward Buckler and Charles Simon, and research leader Gan-Yuan Zhong have developed a relatively fast and inexpensive way to identify genetic markers not only in grapes, but also in other crops by using modern sequencing approaches. Ware and Buckler work at the ARS Robert W. Holley Center for Agriculture and Health in Ithaca, N.Y.; Simon works at the ARS Plant Genetic Resources Unit at Geneva, N.Y., and Zhong is at the ARS Grape Genetics Research Unit, also at Geneva.

The researchers used the technology to sequence representative portions of the genomes from 10 cultivated grape varieties, six wild varieties and the clone of Pinot Noir originally sequenced by scientists in 2007. They developed filters that allowed them to make corrections for common sequencing errors, and discovered thousands of high-quality single nucleotide polymorphisms, or SNPS, which are genetic markers that can serve as signposts for showing how plants are related to each other.

They then used 9,000 of those SNPs in a custom-designed assay to examine DNA patterns at defined points along each cultivar’s genome. They found the SNPS contained enough data to identify the relationships and geographic origins of the cultivars. The work was published in PLOS One.

Improved technology is expected to make it possible to one day sequence the entire genomes of large numbers of grapes. But in the meantime, the work will help researchers identify portions of the grape genome where they can find genes that confer desirable traits, offering better information for breeders developing new varieties. The technique also should make it easier to identify the origins of other types of plants, characterize relationships in other plant collections, and accelerate genetic mapping efforts in a number of crop species.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture. The research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Dennis O'Brien | Newswise Science News
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>