Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breeding Ozone-Tolerant Crops

23.08.2011
U.S. Department of Agriculture (USDA) scientists working with the University of Illinois at Urbana-Champaign found that future levels of ground-level ozone could reduce soybean yields by an average 23 percent.

Randy Nelson, geneticist and research leader with the USDA Agricultural Research Service Soybean/Maize Germplasm, Pathology, and Genetics Research Unit in Urbana, Ill., and Lisa Ainsworth, a molecular biologist with the ARS Global Change and Photosynthesis Research Unit in Urbana, are screening soybean varieties for ozone tolerance and sensitivity in SoyFACE (Soybean Free Air Concentration Enrichment) experiments. They are working with Amy Betzelberger, a graduate research assistant in the Department of Plant Biology at the University of Illinois, and other University of Illinois colleagues.

ARS is USDA's principal intramural scientific research agency.

SoyFACE involves testing plants in open-air field conditions under atmospheric conditions predicted for the year 2050. At that time, ozone concentrations are expected to be 50 percent higher than today's concentrations.

During 2007 and 2008, Nelson, Ainsworth, Betzelberger and their colleagues tested 10 Midwestern soybean varieties that had been released between 1952 and 2003. The varieties were selected from initial tests of 22 cultivars and experimental lines evaluated for four years.

The researchers found that exposure to 82 parts per billion (ppb) ozone reduced soybean yields by an average 23 percent across all 10 varieties. They also found significant differences in ozone tolerance among the varieties. This shows the potential for breeding more ozone-tolerant varieties.

Since ozone concentrations have been rising for decades, the scientists initially thought that varieties developed more recently would be more ozone-tolerant. But the scientists didn't see any significant improvement in ozone tolerance in soybean varieties released since the 1980s.

This research, in support of the USDA priority of responding to climate change, is described in the journal Plant, Cell and Environment.

Don Comis | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>