Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bovine Mastitis — could a vaccine be on the way?

18.09.2008
It is the most common infectious disease in farmed animals. Around one million cases occur each year in the UK. It is painful, occasionally life threatening, and costs the dairy industry £200m every year in lost production and treatments. Within the UK alone it has been estimated that around 12m doses of antibiotic are used annually to control and treat mastitis in cattle.

Now The University of Nottingham, with funding worth £2.2m, is to carry out a study of the most common cause of Bovine Mastitis in the UK — Streptococcus uberis (S. uberis). If researchers can identify which parts of the bacteria enable the infection their results could lead to the production of an effective vaccine.

James Leigh, Professor of Molecular Bacteriology, who has recently joined the School of Veterinary Medicine and Science, said: “We hope to uncover bacterial antigens of potential use in vaccines aimed at preventing bovine mastitis and provide a detailed understanding of how animals can fight off the disease.”

Bovine Mastitis is a bacterial infection of the udder in dairy cows. S. uberis is responsible for a significant proportion of clinical mastitis worldwide — but unlike many other bacteria that cause the disease S. uberis is also in the environment — it is found in pasture and bedding and can even colonise the cow at other body sites with no ill effect — so it is difficult to see how it can be controlled by changes to animal husbandry and milking-time hygiene.

With funding from the Biotechnology and Biological Sciences Research Council (BBSRC) the School of Veterinary Medicine and Science has established research laboratories at the Institute for Animal Health (IAH). The project is being conducted in collaboration with Dr Tracey Coffey’s Bovine Genomics group based at IAH and other groups at the Royal Veterinary College, the US Department of Agriculture in the UK and the University of Oxford.

Professor Leigh said: “We will use state-of-the-art molecular technology to determine the differences between strains of S. uberis that can and cannot cause disease. Proteins that are only present in the disease causing strains hold the key to determining which components are essential for infection. We will show which of these proteins are most likely to make an effective vaccine by producing strains of S. uberis which lack the ability to produce each of these proteins; if a strain lacking a particular protein is less able to cause disease then this protein is important for the disease process and becomes a candidate for vaccine development.”

The team also want to identify any parts of the immune response in the dairy cow which can be altered to prevent the disease — this information could subsequently be used to develop drugs that interfere with the chemical messages that lead to inflammation and therefore reduce the level of disease.

In the last few months members of the Nottingham Vet School have been involved in successfully winning a number of grants and awards to support the School’s growing portfolio of research.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Bovine-Mastitis-could-a-vaccine-be-on-the-way.html

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>