Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black aspergilli species responsible for infecting corn identified

01.10.2010
U.S. Department of Agriculture (USDA) scientists in Athens, Georgia, have reported for the first time that several species of Aspergillus niger, or black aspergilli, are capable of infecting corn and peanuts as endophytes. The researchers also showed that, under laboratory conditions, these species produced mycotoxins.

Using a molecular procedure they developed, USDA Agricultural Research Service (ARS) research leader Charles Bacon, microbiologist Dorothy Hinton, and Edwin Palencia, a graduate student in the Department of Plant Pathology of the University of Georgia in Athens, identified more than 18 species of black aspergilli, several of which have the potential to produce mycotoxins.

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of ensuring food safety.

Bacon and his team at the ARS Richard B. Russell Research Center in Athens also found that several A.niger species that were thought to be incapable of producing mycotoxins can produce ochratoxins—carcinogenic mycotoxins that can affect humans, livestock, and poultry. These A. niger species were deemed as non-producers of mycotoxins based on in vitro culture media, but on corn they were indeed producers. The findings from that research were published in the journal Toxins.

A. niger, one of a group of black-spored fungi, is a common contaminant on corn, peanuts, several other important food and feed ingredients, and products made from them.

Bacon and his team's work suggest that species of A. niger are also contributors to the occurrence of fumonisins in corn, other cereals and food items. Fumonisins are a class of mycotoxins that are known to be carcinogenic and are primarily produced by the Fusarium species of fungi. Some of the black aspergilli identified in this study are also producers of this mycotoxin.

According to the research team, the A. niger complex of species acts within corn and peanuts as an endophyte, living within the tissues of the plant, but causing no harm to the plant itself. Three species of A. niger are identified in U.S. corn and peanuts as symptomless endophytes, which suggests the potential for concern as pathogens and as food safety hazards.

Black aspergilli, generally viewed as post-harvest pathogens, produce rots of grapes, corn and numerous other fruits and grain.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Sharon Durham | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research USDA black populations food safety

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>