Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black aspergilli species responsible for infecting corn identified

01.10.2010
U.S. Department of Agriculture (USDA) scientists in Athens, Georgia, have reported for the first time that several species of Aspergillus niger, or black aspergilli, are capable of infecting corn and peanuts as endophytes. The researchers also showed that, under laboratory conditions, these species produced mycotoxins.

Using a molecular procedure they developed, USDA Agricultural Research Service (ARS) research leader Charles Bacon, microbiologist Dorothy Hinton, and Edwin Palencia, a graduate student in the Department of Plant Pathology of the University of Georgia in Athens, identified more than 18 species of black aspergilli, several of which have the potential to produce mycotoxins.

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of ensuring food safety.

Bacon and his team at the ARS Richard B. Russell Research Center in Athens also found that several A.niger species that were thought to be incapable of producing mycotoxins can produce ochratoxins—carcinogenic mycotoxins that can affect humans, livestock, and poultry. These A. niger species were deemed as non-producers of mycotoxins based on in vitro culture media, but on corn they were indeed producers. The findings from that research were published in the journal Toxins.

A. niger, one of a group of black-spored fungi, is a common contaminant on corn, peanuts, several other important food and feed ingredients, and products made from them.

Bacon and his team's work suggest that species of A. niger are also contributors to the occurrence of fumonisins in corn, other cereals and food items. Fumonisins are a class of mycotoxins that are known to be carcinogenic and are primarily produced by the Fusarium species of fungi. Some of the black aspergilli identified in this study are also producers of this mycotoxin.

According to the research team, the A. niger complex of species acts within corn and peanuts as an endophyte, living within the tissues of the plant, but causing no harm to the plant itself. Three species of A. niger are identified in U.S. corn and peanuts as symptomless endophytes, which suggests the potential for concern as pathogens and as food safety hazards.

Black aspergilli, generally viewed as post-harvest pathogens, produce rots of grapes, corn and numerous other fruits and grain.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Sharon Durham | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research USDA black populations food safety

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>