Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomass industry needs to prepare for water constraints

28.02.2014

The viability of the bioenergy crops industry could be strengthened by regulatory efforts to address nonpoint source pollution from agricultural sources. That, in turn, means that the industry should be strategic in developing metrics that measure the ability to enact positive changes in agricultural landscapes, particularly through second-generation perennial crops, according to a paper by a University of Illinois expert in bioenergy law.

Debates surrounding the sustainability of bioenergy have emerged in recent years relating to water quality and quantity, and those debates will only grow louder as big urban areas in the U.S. start running out of water and environmental groups and the Environmental Protection Agency push for more stringent policies to address nutrient pollution, said Jody Endres, a professor of bioenergy, environmental and natural resources law at Illinois.

“From a bioenergy standpoint, that’s when we’re going to have to figure out how we prioritize growing crops for bioenergy,” said Endres, who also is an affiliate of the Energy Biosciences Institute, a collaboration involving the U. of I., the University of California at Berkeley, the Lawrence Berkeley National Laboratory and BP, an energy company.

“With regard to water shortages, agriculture might lose that battle against more powerful urban interests, although certain states – Texas, in particular – have been favorable to agricultural interests,” she said. “But no matter how this plays out, we as a society are going to have to think about how can we meet the water demands of our citizens, as well as improving the quality of the water itself, and how much of it we decide to devote to biofuels crops, particularly in areas of water stress.”

According to Endres, increased regulatory pressure on agriculture’s contribution to nutrient pollution is almost certain, as demonstrated by the EPA’s actions in the Chesapeake Bay and in Florida.

“Pressure is also mounting from environmentalists for the EPA to take action to combat hypoxia in the Gulf of Mexico, which has already led to a loss of fishing and tourism jobs that rely on a functioning ecosystem,” she said. “What all of this means is that biomass producers in the U.S. need to be ahead of the curve and put in place metrics that can demonstrate their potential to benefit water quality. These would help producers to participate in emerging ecosystem services markets such as nutrient credit trading programs like those already in place in Virginia.”

As both water quality and quantity are reduced, competition for remaining useable water resources inevitably goes up among agricultural, ecological and urban uses, Endres said.

“In light of severe drought across much of the U.S., water quantity can no longer be taken for granted by agricultural producers, who may be more accustomed to abundant water supplies characteristic of rain-fed agriculture,” she said. “So water use will likely be curtailed, particularly in areas already under stress from drought, and where irrigation withdrawals are taken from depleted underground aquifers. There also will be increased national pressure to do a nutrient-management strategy in the states, if not at the national level.”

In the U.S., the areas of greatest concern for the biomass industry lie primarily in the Great Plains, where agriculture is more dependent on irrigation. Complex state laws, exemplified by the tangle of laws in Texas, will complicate future disputes over water.

“U.S. law basically addresses water quantity and quality in different ways,” Endres said. “At the federal level, we have the Clean Water Act that deals with quality. But then we have 50 different state rules on water quantity – the two are sometimes related to one another.”

According to the paper, sustainability standards for energy biomass in Europe are driving efforts to gauge the effects of biomass practices in the U.S.

“Much of European bioenergy is going to come from the U.S. and Brazil, so they’re very interested in how we handle sustainability issues,” Endres said. “Europe is really a leader in thinking about bioenergy from a sustainability standpoint. They’ve been dealing a lot with the greenhouse gas aspect of it, but the next question, and I think the bigger and more important question, is how bioenergy and the definition of its sustainability fits with competing water uses.”

Efforts to reduce the environmental footprint of biomass production, coupled with the benefits of perennial crops over annual crops, coincide with federal efforts to reduce nutrient and sediment pollution, Endres said.

“We have a lot of research collaboration with the Europeans on how we handle the greenhouse gas aspect of it, but with water, Europeans must begin to understand how 50 states, each with different laws, handle quantity issues,” she said

According to Endres, the aggressive measures by the EPA to clean up nutrient-polluted waterways present valuable incentives for perennial biomass crops to play a major role in reducing pollution run-off.

“The biomass sector is still in its infancy, so we want to make sure that it can stand on its own two feet, from a financial standpoint,” Endres said. “But you have to balance that with the opportunity aspect of it, especially for perennial crops, which mesh nicely with nutrient-reduction strategies. So there’s real opportunity here in the U.S.”

The paper was published as a chapter in the report “Bioenergy and Water” by the Joint Research Centre of the European Commission’s Institute for Energy & Transport.

Editor's notes: To contact Jody Endres, call 217-333-9579; email jendres2@illinois.edu. The paper, “U.S. Federal and State Water Laws’ Impact on Bioenergy Policy,” is available online.

Phil Ciciora | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Biomass EPA Energy agriculture bioenergy crops ecosystem greenhouse pressure regulatory

More articles from Agricultural and Forestry Science:

nachricht Recycled Water, Salt-Tolerant Grass a Water-Saving Pair
29.06.2015 | American Society of Agronomy (ASA), Crop Science Society of America (CSSA), Soil Science Society of America (SSSA)

nachricht Selective breeding and immunization improve fish farm yields
29.06.2015 | Universiti Putra Malaysia (UPM)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>