Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists discover gene behind ‘plant sex mystery’

23.10.2008
An enigma – unique to flowering plants – has been solved by researchers from the University of Leicester (UK) and POSTECH, South Korea.

The discovery is reported in the journal Nature on 23 October 2008.

Scientists already knew that flowering plants, unlike animals require not one, but two sperm cells for successful fertilisation.

The mystery of this ‘double fertilization’ process was how each single pollen grain could produce ‘twin’ sperm cells. One to join with the egg cell to produce the embryo, and the other to join with a second cell in the ovary to produce the endosperm, a nutrient-rich tissue, inside the seed.

Double fertilisation is essential for fertility and seed production in flowering plants so increased understanding of the process is important.

Now Professor David Twell, of the Department of Biology at the University of Leicester and Professor Hong Gil Nam of POSTECH, South Korea report the discovery of a gene that has a critical role in allowing precursor reproductive cells to divide to form twin sperm cells.

Professor Twell said: “This collaborative project has produced results that unlock a key element in a botanical puzzle.

The key discovery is that this gene, known as FBL17, is required to trigger the destruction of another protein that inhibits cell division. The FBL17 gene therefore acts as a switch within the young pollen grain to trigger precursor cells to divide into twin sperm cells.

“Plants with a mutated version of this gene produce pollen grains with a single sperm cell instead of the pair of sperm that are required for successful double fertilization.

“Interestingly, the process employed by plants to control sperm cell reproduction was found to make use of an ancient mechanism found in yeast and in animals involving the selective destruction of inhibitor proteins that otherwise block the path to cell division.

“Removal of these blocks promotes the production of a twin sperm cell cargo in each pollen grain and thus ensures successful reproduction in flowering plants.

“This discovery is a significant step forward in uncovering the mysteries of flowering plant reproduction. This new knowledge will be useful in understanding the evolutionary origins of flowering plant reproduction and may be used by plant breeders to control crossing behaviour in crop plants.

“In the future such information may become increasingly important as we strive to breed superior crops that maintain yield in a changing climate. Given that flowering plants dominate the vegetation of our planet and that we are bound to them for our survival, it is heartening that we are one step closer to understanding their reproductive secrets.”

Researchers at the University of Leicester are continuing their investigation into plant reproduction. Further research underway in Professor Twell’s laboratory is already beginning to reveal the answers to secrets about how the pair of sperm cells produced within each pollen grain aquires the ability to fertilize.

• Prof Twell’s work, in the Department of Biology at the University of Leicester is financially supported by the UK Biotechnology and Biological Research Council (BBSRC).

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>