Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists discover gene behind ‘plant sex mystery’

23.10.2008
An enigma – unique to flowering plants – has been solved by researchers from the University of Leicester (UK) and POSTECH, South Korea.

The discovery is reported in the journal Nature on 23 October 2008.

Scientists already knew that flowering plants, unlike animals require not one, but two sperm cells for successful fertilisation.

The mystery of this ‘double fertilization’ process was how each single pollen grain could produce ‘twin’ sperm cells. One to join with the egg cell to produce the embryo, and the other to join with a second cell in the ovary to produce the endosperm, a nutrient-rich tissue, inside the seed.

Double fertilisation is essential for fertility and seed production in flowering plants so increased understanding of the process is important.

Now Professor David Twell, of the Department of Biology at the University of Leicester and Professor Hong Gil Nam of POSTECH, South Korea report the discovery of a gene that has a critical role in allowing precursor reproductive cells to divide to form twin sperm cells.

Professor Twell said: “This collaborative project has produced results that unlock a key element in a botanical puzzle.

The key discovery is that this gene, known as FBL17, is required to trigger the destruction of another protein that inhibits cell division. The FBL17 gene therefore acts as a switch within the young pollen grain to trigger precursor cells to divide into twin sperm cells.

“Plants with a mutated version of this gene produce pollen grains with a single sperm cell instead of the pair of sperm that are required for successful double fertilization.

“Interestingly, the process employed by plants to control sperm cell reproduction was found to make use of an ancient mechanism found in yeast and in animals involving the selective destruction of inhibitor proteins that otherwise block the path to cell division.

“Removal of these blocks promotes the production of a twin sperm cell cargo in each pollen grain and thus ensures successful reproduction in flowering plants.

“This discovery is a significant step forward in uncovering the mysteries of flowering plant reproduction. This new knowledge will be useful in understanding the evolutionary origins of flowering plant reproduction and may be used by plant breeders to control crossing behaviour in crop plants.

“In the future such information may become increasingly important as we strive to breed superior crops that maintain yield in a changing climate. Given that flowering plants dominate the vegetation of our planet and that we are bound to them for our survival, it is heartening that we are one step closer to understanding their reproductive secrets.”

Researchers at the University of Leicester are continuing their investigation into plant reproduction. Further research underway in Professor Twell’s laboratory is already beginning to reveal the answers to secrets about how the pair of sperm cells produced within each pollen grain aquires the ability to fertilize.

• Prof Twell’s work, in the Department of Biology at the University of Leicester is financially supported by the UK Biotechnology and Biological Research Council (BBSRC).

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>