Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bigger corn plants bully smaller neighbors in no-till fields

It might not look like there's much going on in those roadside corn fields, but a Purdue University researcher has shown that corn plants are in a fierce battle with each other for resources.

Tony Vyn, a professor of agronomy, said it's been known for a long time that young corn plants are, on average, shorter in no-till, corn-on-corn fields, but that doesn't mean there is an overall stunting of growth among all plants. Instead, residue left over from last year's corn crop is changing soil conditions and creating a disadvantage for some plants fighting for sunlight, water and nutrients.

"There is a hierarchy that is formed, even though the plants are genetically the same and should be equal in size and stature," Vyn said about his findings, which were published in the early online version of the journal Soil & Tillage Research. "No-till corn yield reductions have little to do with an overall height reduction early in the season. They have more to do with height variability during vegetative growth."

Vyn said yield losses of up to 14 percent can be attributed to this competition in no-till fields where corn is planted the year after corn. In those fields, the leftover corn residue creates patches of soil with lower temperatures and different water and nutrient content. Seeds planted there are at a disadvantage.

"These conditions created by the field residue can affect root development," he said. "Plants that have better access to resources grow faster and then dominate their smaller neighbors."

Vyn studied plant height data over 14 years and found that there were pronounced height differences among plants by four weeks. It had been thought that a no-till field situation with high residue cover and no soil loosening uniformly reduced the height of all plants because of overall cooler soil temperatures, but Vyn said significant height differences were observed from plant to plant.

The negative consequences of this plant competition are exacerbated as planting density increases.

"For example, competition for nitrogen increases as crowding increases," Vyn said. "The higher the density, the greater the intensity of the competition for all resources."

Weather conditions, such as a lack of rainfall during a critical development period, also can affect the final yield from plants fighting for limited resources.

While some plants dominate and grow to their full potential, the smaller, dominated plants decrease the field's overall yield.

Vyn said growers should ensure during the previous year's harvest that residue cover will be uniform, that fields are drained adequately, that surface soil compaction is avoided and that nutrients are evenly distributed. No-till fields are desirable because they decrease the amount of nutrients running off into nearby water, but Vyn said newer tillage options, such as vertical tillage, are less disruptive than the traditional intensive tillage and could ensure more uniform conditions for seeds.

The next step in the research is to investigate how vertical tillage systems and nutrient banding affect plant height uniformity and yield in corn-on-corn fields and whether hybrids developed for rootworm resistance are as susceptible to plant height variations.

Pioneer Hi-Bred International and Purdue University funded the research, and Beck's Hybrids provided corn seed.

Writer: Brian Wallheimer, 765-496-2050,

Source: Tony Vyn, 765-496-3757,

Brian Wallheimer | EurekAlert!
Further information:

Further reports about: corn plants corn-on-corn fields fighting for sunlight

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>