Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bigger corn plants bully smaller neighbors in no-till fields

26.01.2010
It might not look like there's much going on in those roadside corn fields, but a Purdue University researcher has shown that corn plants are in a fierce battle with each other for resources.

Tony Vyn, a professor of agronomy, said it's been known for a long time that young corn plants are, on average, shorter in no-till, corn-on-corn fields, but that doesn't mean there is an overall stunting of growth among all plants. Instead, residue left over from last year's corn crop is changing soil conditions and creating a disadvantage for some plants fighting for sunlight, water and nutrients.

"There is a hierarchy that is formed, even though the plants are genetically the same and should be equal in size and stature," Vyn said about his findings, which were published in the early online version of the journal Soil & Tillage Research. "No-till corn yield reductions have little to do with an overall height reduction early in the season. They have more to do with height variability during vegetative growth."

Vyn said yield losses of up to 14 percent can be attributed to this competition in no-till fields where corn is planted the year after corn. In those fields, the leftover corn residue creates patches of soil with lower temperatures and different water and nutrient content. Seeds planted there are at a disadvantage.

"These conditions created by the field residue can affect root development," he said. "Plants that have better access to resources grow faster and then dominate their smaller neighbors."

Vyn studied plant height data over 14 years and found that there were pronounced height differences among plants by four weeks. It had been thought that a no-till field situation with high residue cover and no soil loosening uniformly reduced the height of all plants because of overall cooler soil temperatures, but Vyn said significant height differences were observed from plant to plant.

The negative consequences of this plant competition are exacerbated as planting density increases.

"For example, competition for nitrogen increases as crowding increases," Vyn said. "The higher the density, the greater the intensity of the competition for all resources."

Weather conditions, such as a lack of rainfall during a critical development period, also can affect the final yield from plants fighting for limited resources.

While some plants dominate and grow to their full potential, the smaller, dominated plants decrease the field's overall yield.

Vyn said growers should ensure during the previous year's harvest that residue cover will be uniform, that fields are drained adequately, that surface soil compaction is avoided and that nutrients are evenly distributed. No-till fields are desirable because they decrease the amount of nutrients running off into nearby water, but Vyn said newer tillage options, such as vertical tillage, are less disruptive than the traditional intensive tillage and could ensure more uniform conditions for seeds.

The next step in the research is to investigate how vertical tillage systems and nutrient banding affect plant height uniformity and yield in corn-on-corn fields and whether hybrids developed for rootworm resistance are as susceptible to plant height variations.

Pioneer Hi-Bred International and Purdue University funded the research, and Beck's Hybrids provided corn seed.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Tony Vyn, 765-496-3757, tvyn@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: corn plants corn-on-corn fields fighting for sunlight

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>