Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees can mediate the escape of genetically engineered material over several kilometres’

22.09.2008
A study by scientists from the Nairobi-headquartered international research centre icipe, in collaboration with the French Institut de Recherche pour le Développement (IRD) has established that bees have the potential to mediate the escape of transgenes (genetically engineered material) from crops to their wild relatives over several kilometres.

The findings, which have been published in the Proceedings of the National Academy of Sciences (PNAS) of 9th September, bear significant implications for the introduction of genetically modified crops in Africa.

The research, which was partly funded by USAID and the Rockefeller Foundation, was triggered by the planned release of insect-resistant genetically engineered cowpea in Africa, where cowpea’s wild relative, Vigna unguiculata var. spontanea, is widely distributed. For the first time with insect pollinators, the scientists used radio tracking to determine the movements of the carpenter bee Xylocopa flavorufa and their implications for long-distance pollen flow.

“Bees can visit flowers as far as six kilometres away from their nest. From complete flight records in which bees visited wild and domesticated plant populations, we concluded that bees can mediate gene flow, and potentially allow transgenes to escape over several kilometres,” explains icipe scientist Remy S. Pasquet.

He adds that for genetically engineered cowpea in Africa, these results indicate that although pollen movement beyond a few hundred meters has a low probability, strict isolation by distance may not be feasible. This research therefore confirms the widely held hypothesis that deploying genetically engineered cowpea in sub-Saharan Africa may mean that an escape of the transgene to the wild cowpea relative is inevitable.

Liz Nganga | alfa
Further information:
http://www.icipe.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>