Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees Capable of Learning Feats with Tasty Prize in Sight

19.03.2014

They may have tiny brains, but bumblebees are capable of some remarkable learning feats, especially when they might get a tasty reward, according to two studies by University of Guelph researchers.

PhD student Hamida Mirwan and Prof. Peter Kevan, School of Environmental Sciences, are studying bees’ ability to learn by themselves and from each other.

In the first study, published in February in Animal Cognition, the researchers found bees capable of learning to solve increasingly complex problems.

The researchers presented bees with a series of artificial flowers that required ever-more challenging strategies, such as moving objects aside or upwards, to gain a sugar syrup reward.

When inexperienced bees encountered the most complex flower first, they were unable to access the syrup reward and stopped trying. Bees allowed to progress through increasingly complex flowers were able to navigate the most difficult ones.

“Bees with experience are able to solve new problems that they encounter, while bees with no experience just give up,” said Mirwan.

She and Kevan consider the study an example of scaffold learning, a concept normally restricted to human psychology in which learners move through increasingly complex steps.

In a second study recently published in Psyche, the researchers found bees learned by watching and communicating with other bees, a process called social learning.

Mirwan made artificial flowers requiring the bees to walk on the underside of a disk to get a sugar syrup reward. These experienced bees foraged on the artificial flowers for several days until they became accustomed to feeding at them.

To see whether other bees could learn from the experienced foragers, Mirwan confined inexperienced bees in a mesh container near the artificial flowers where they could observe the experienced bees. When the naïve bees were allowed to forage on the artificial flowers, they took just 70 seconds to get the reward.

Control bees that had not observed the experienced bees could not access the syrup.

“Social learning in animals usually involves one individual observing and imitating another, although other kinds of communication can also be involved,” said Mirwan.

“They could try for up to 30 minutes, but most gave up before then.”

In a final test, Mirwan placed experienced bees in a hive with naive bees. When the naive bees were allowed to forage on the artificial flowers, they gained the syrup in just 3.5 minutes.

Behavioural scientists usually assume that observation and imitation are at the heart of social learning, but social insects such as bees can also transmit information through touch, vibration and smell.

The researchers said the communication method used by the bees is still a mystery.

“We can’t quite explain how bees that had never even seen an artificial flower were able to become adept so quickly at foraging on them, but clearly some in-hive communication took place,” said Kevan.

“It suggests that social learning in bumblebees is even more complex than we first expected.”

For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca; or Kevin Gonsalves, Ext. 56982, or kgonsalves@uoguelph.ca.

Peter Kevan | EurekAlert!
Further information:
http://www.uoguelph.ca/news/2014/03/bees_capable_learning_feats_tasty_prize_in_sight.html

Further reports about: Cognition Communications Learning Sciences animals strategies sugar

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>