Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees Capable of Learning Feats with Tasty Prize in Sight

19.03.2014

They may have tiny brains, but bumblebees are capable of some remarkable learning feats, especially when they might get a tasty reward, according to two studies by University of Guelph researchers.

PhD student Hamida Mirwan and Prof. Peter Kevan, School of Environmental Sciences, are studying bees’ ability to learn by themselves and from each other.

In the first study, published in February in Animal Cognition, the researchers found bees capable of learning to solve increasingly complex problems.

The researchers presented bees with a series of artificial flowers that required ever-more challenging strategies, such as moving objects aside or upwards, to gain a sugar syrup reward.

When inexperienced bees encountered the most complex flower first, they were unable to access the syrup reward and stopped trying. Bees allowed to progress through increasingly complex flowers were able to navigate the most difficult ones.

“Bees with experience are able to solve new problems that they encounter, while bees with no experience just give up,” said Mirwan.

She and Kevan consider the study an example of scaffold learning, a concept normally restricted to human psychology in which learners move through increasingly complex steps.

In a second study recently published in Psyche, the researchers found bees learned by watching and communicating with other bees, a process called social learning.

Mirwan made artificial flowers requiring the bees to walk on the underside of a disk to get a sugar syrup reward. These experienced bees foraged on the artificial flowers for several days until they became accustomed to feeding at them.

To see whether other bees could learn from the experienced foragers, Mirwan confined inexperienced bees in a mesh container near the artificial flowers where they could observe the experienced bees. When the naïve bees were allowed to forage on the artificial flowers, they took just 70 seconds to get the reward.

Control bees that had not observed the experienced bees could not access the syrup.

“Social learning in animals usually involves one individual observing and imitating another, although other kinds of communication can also be involved,” said Mirwan.

“They could try for up to 30 minutes, but most gave up before then.”

In a final test, Mirwan placed experienced bees in a hive with naive bees. When the naive bees were allowed to forage on the artificial flowers, they gained the syrup in just 3.5 minutes.

Behavioural scientists usually assume that observation and imitation are at the heart of social learning, but social insects such as bees can also transmit information through touch, vibration and smell.

The researchers said the communication method used by the bees is still a mystery.

“We can’t quite explain how bees that had never even seen an artificial flower were able to become adept so quickly at foraging on them, but clearly some in-hive communication took place,” said Kevan.

“It suggests that social learning in bumblebees is even more complex than we first expected.”

For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca; or Kevin Gonsalves, Ext. 56982, or kgonsalves@uoguelph.ca.

Peter Kevan | EurekAlert!
Further information:
http://www.uoguelph.ca/news/2014/03/bees_capable_learning_feats_tasty_prize_in_sight.html

Further reports about: Cognition Communications Learning Sciences animals strategies sugar

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>