Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria Living on Old-Growth Trees May Help Forests Grow

Bacteria living on old-growth trees may help forests grow

Biology researchers discover that bacteria living in mosses on tree branches twice as effective at ‘fixing’ nitrogen as those on the ground

A new study by Dr. Zoë Lindo, a post-doctoral fellow in the Department of Biology at McGill University, and Jonathan Whiteley, a doctoral student in the same department, shows that large, ancient trees may be very important in helping forests grow.

These findings highlight the importance of maintaining the large old-growth trees in the coastal temperate rainforests that stretch from Southern Alaska to Northern California. Lindo’s findings suggest that it is the interactions between old trees, mosses and cyanobacteria, which contribute to nutrient dynamics in a way that may actually sustain the long-term productivity of these forests.

“What we’re doing is putting large old trees into a context where they’re an integral part of what a forest is,” says Dr. Lindo. “These large old trees are doing something: they’re providing habitat for something that provides habitat for something else that’s fertilizing the forest. It’s like a domino effect; it’s indirect but without the first step, without the trees, none of it could happen.”

There are three players in this story: 1) large, old trees; 2) mosses that grow along their branches; and 3) a group of bacteria called cyanobacteria associated with the mosses. The cyanobacteria take nitrogen from the atmosphere and make it available to plants–a process called “nitrogen fixation” that very few organisms can do.

The growth and development of many forests is thought to be limited by the availability of nitrogen. Cyanobacteria in mosses on the ground were recently shown to supply nitrogen to the Boreal forest, but until now cyanobacteria have not been studied in coastal forests or in canopies (tree-tops). By collecting mosses on the forest floor and then at 15 and 30 metres up into the forest canopy, Lindo was able to show both that the cyanobacteria are more abundant in mosses high above the ground, and that they “fix” twice as much nitrogen as those associated with mosses on the forest floor.

Moss is the crucial element. The amount of nitrogen coming from the canopy depends on trees having mosses.

“You need trees that are large enough and old enough to start accumulating mosses before you can have the cyanobacteria that are associated with the mosses,” Lindo said. “Many trees don’t start to accumulate mosses until they’re more than 100 years old. So it’s really the density of very large old trees that are draped in moss that is important at a forest stand level. We surveyed trees that are estimated as being between 500 and 800 years old.”

The research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

For an abstract of the article:

Web page:
Lab blog:
Katherine Gombay
Media Relations
McGill University

Katherine Gombay | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>