Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artichokes grow big in Texas

15.12.2011
Researchers recommend best practices for commercial production in water-limited regions

Loaded with antioxidants and phytochemicals, the artichoke is becoming more popular as consumer interest in specialty products swells. And while 90% of the artichokes grown in the United States come from California, growers in Texas are working to introduce globe artichokes as commercial specialty crop in their region. They say the healthy vegetable has the potential to provide new economic opportunities for regional agricultural throughout the southern U.S.

The authors of a new study say that before artichoke can be successfully established in Texas and southern regions of the U.S. where water is scarce, more information is needed about irrigation and nitrogen (N) management practices. Togo Shinohara, Shinsuke Agehara, Kil Sun Yoo, and Daniel Leskovar from Texas AgriLife Research, Vegetable and Fruit Improvement Center at Texas A&M University published a study in HortScience that should give growers the tools they need to ramp up commercial artichoke operations.

"The aim of our three-season study was to determine crop yield, quality, and nutritional components of fresh artichoke heads in response to differential irrigation regimes and N fertilizer rates", said author Daniel Leskovar. "To introduce artichoke cultural practices into commercial production in water-limited regions of the southern United States, it is important to understand impact of these practices."

The scientists evaluated marketable yield, yield components, quality, and nutrient levels of artichoke heads grown under three irrigation regimes (50%, 75%, and 100% crop evapotranspiration) and four nitrogen rates (0 to 10, 60, 120, and 180 kg/ha) under subsurface drip irrigation.

Results of the field experiments showed that irrigation was more effective than N management for optimizing artichoke yield. Marketable yields significantly increased at 100% evapotranspiration (ETc) compared with 75% and 50% ETc, whereas a 20% to 35% yield reduction occurred at 50% ETc across seasons. The researchers believe that the lack of yield responses to N rates was in part the result of high pre-plant soil NO3-N and NH4-N levels.

Harvest time appeared to have the largest effect on artichoke nutritional quality, followed by deficit irrigation. "Total phenolics and chlorogenic acid of artichoke heads increased as the harvesting season progressed and were highest at 50% ETc during mid- and late harvests in one season", Leskovar noted.

The team concluded that approximately 700 mm (for a bare soil system) and approximately 350 mm (in a plasticulture system) of water inputs and 120 kg/ha or less of N appears sufficient to obtain high marketable yields, superior size, and optimal nutritional quality for production of artichokes in Texas.

The researchers hope their efforts will bridge the knowledge gap on irrigation and nitrogen management practices and help put artichoke production on the map in Texas.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/46/3/377

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>