Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ARS scientists turn to a wild oat to combat crown rust

04.02.2010
Agricultural Research Service (ARS) scientists are tapping into the DNA of a wild oat, considered by some to be a noxious weed, to see if it can help combat crown rust, the most damaging fungal disease of oats worldwide.

Crown rust reduces oat yields up to 40 percent and shows a remarkable ability to adapt to varieties bred to genetically resist it. ARS researchers and colleagues have inserted individual resistance genes into oat varieties that produce proteins believed to recognize strains of crown rust and trigger a defense response against them. "Multiline" cultivars with several resistance genes also have been developed.

Crown rust is caused by Puccinia coronata, a fungus that reproduces both sexually and asexually and has enough genetic flexibility to overcome resistance genes, usually in about five years, according to Martin L. Carson, research leader at the ARS Cereal Disease Laboratory in St. Paul, Minn. His analysis also shows crown rust is increasing in virulence throughout North America.

Carson has turned to a wild variety, Avena barbata, for new genes with effective resistance. The slender oat, listed as a noxious weed in Missouri and classified as moderately invasive in California, grows wild in South Asia, much of Europe and around the Mediterranean region.

Carson inoculated A. barbata seedlings with crown rust. After several crosses, he found seedlings highly resistant to a variety of crown rust strains. In ongoing studies, he is crossing them with the domestic oat, A. sativa, to try to develop the right blend of resistance and desirable traits, such as high yield and drought tolerance. The goal is new plant lines that will effectively fight off crown rust for many years.

The research, which supports the U.S. Department of Agriculture (USDA) priority of promoting international food security, was published in the journal Plant Disease.

Read more about this research in the February 2010 issue of Agricultural Research magazine.

ARS is USDA's principal intramural scientific research agency.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Dennis O'Brien | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research Disease USDA resistance genes

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>