Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arming plants against drought

36 degrees in the shade, little rain for weeks. The maize is not growing, grains are ripening too early. How can plants survive ever-lengthier periods of heat and drought unscathed? This very issue will be examined by a new Bavarian research association involving the University of Würzburg.

“Forplanta: plants fit for the future” is the name of the new Bavarian research association which will commence its work in August 2010. The University of Würzburg’s representative will be plant scientist Professor Rainer Hedrich. Joining him will be researchers from three Munich institutes of higher education and the University of Erlangen-Nuremberg. The Science Ministry will provide the association with funding of around EUR 1.5 million over the next three years.

Climate change: scientists are anticipating increasingly volatile weather conditions, with more frequent periods of drought and heat. For plants, this means water shortage and stress. As a result, they are becoming more susceptible to diseases and pests – a trend that is threatening agricultural yields.

Studying plant response to stress

How exactly do maize & co. respond to stress? “To date, only the effect of individual stress factors on plant productivity has been examined,” says Rainer Hedrich. The focus of the new research association will therefore be on the responses that plants exhibit when several stress factors occur at the same time: heat, drought, and pest infestation.

The scientists are aiming to gain new insights using the model plant popular among geneticists Arabidopsis thaliana. There are species of this plant that flourish in dry and hot climes, but also in cold regions. Which genes are responsible for these adjustments? How are they controlled? Can they be manipulated to make plants less vulnerable to drought and heat? Such questions will be considered by the new research association.

Stress hormone abscisic acid at the heart of the matter

At the heart of the matter lie the water balance of plants and the hormone abscisic acid. When a water shortage occurs, this acts as a stress hormone: it prompts stomata in the outer skin of the leaves to close, with the result that the plant loses less water.

The researchers want to improve the effectiveness of this abscisic acid, so plants demonstrate satisfactory growth even when there is little water available to them. If this works: how will this manipulation affect heat tolerance and the plant’s interaction with harmful fungi and bacteria? The association also intends to answer this question.

Ethical questions about green genetic engineering

The approach rooted in natural science will be accompanied by projects from the field of social science and ethics: the relationship between man and nature is also to be examined – particularly in view of green genetic engineering, i.e. the genetic modification of plants. The Forplanta association will explore this issue through the Institute for Scientific Issues related to Philosophy and Theology at the Munich School of Philosophy.

Application of knowledge to cultivated plants

If the research is successful, the intention later is to apply the findings to cultivated plants.

However, in many areas of the world, the climate is changing at a rate quicker than the speed at which plant cultivation can deliver grains adapted to stress. “Green genetic engineering should close this gap,” says Professor Hedrich. “But even with this targeted and therefore faster optimization there is no time to lose. This is because it is also important that we make useful plants and crops fit to fight the pests that climate change will bring.”

Scientists involved in Forplanta

• Prof. Jürgen Soll, Ludwig Maximilian University of Munich, Department of Biology I, Biochemistry and Physiology of Plants (designated spokesperson for the association)
• Prof. Uwe Sonnewald, University of Erlangen-Nuremberg, Department of Biology, Biochemistry
• Prof. Erwin Grill, Technical University Munich, Department of Plant Sciences, Botany
• Prof. Rainer Hedrich, University of Würzburg, Julius-von-Sachs-Institute for Biosciences, Molecular Plant Physiology and Biophysics

• Prof. Christian Kummer, Munich School of Philosophy, Institute for Scientific Issues related to Philosophy and Theology

Contact at the University of Würzburg:

Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institute for Biosciences at the University of Würzburg, T +49 (0)931 31-86100,

Robert Emmerich | idw
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>