Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arming plants against drought

26.07.2010
36 degrees in the shade, little rain for weeks. The maize is not growing, grains are ripening too early. How can plants survive ever-lengthier periods of heat and drought unscathed? This very issue will be examined by a new Bavarian research association involving the University of Würzburg.

“Forplanta: plants fit for the future” is the name of the new Bavarian research association which will commence its work in August 2010. The University of Würzburg’s representative will be plant scientist Professor Rainer Hedrich. Joining him will be researchers from three Munich institutes of higher education and the University of Erlangen-Nuremberg. The Science Ministry will provide the association with funding of around EUR 1.5 million over the next three years.

Climate change: scientists are anticipating increasingly volatile weather conditions, with more frequent periods of drought and heat. For plants, this means water shortage and stress. As a result, they are becoming more susceptible to diseases and pests – a trend that is threatening agricultural yields.

Studying plant response to stress

How exactly do maize & co. respond to stress? “To date, only the effect of individual stress factors on plant productivity has been examined,” says Rainer Hedrich. The focus of the new research association will therefore be on the responses that plants exhibit when several stress factors occur at the same time: heat, drought, and pest infestation.

The scientists are aiming to gain new insights using the model plant popular among geneticists Arabidopsis thaliana. There are species of this plant that flourish in dry and hot climes, but also in cold regions. Which genes are responsible for these adjustments? How are they controlled? Can they be manipulated to make plants less vulnerable to drought and heat? Such questions will be considered by the new research association.

Stress hormone abscisic acid at the heart of the matter

At the heart of the matter lie the water balance of plants and the hormone abscisic acid. When a water shortage occurs, this acts as a stress hormone: it prompts stomata in the outer skin of the leaves to close, with the result that the plant loses less water.

The researchers want to improve the effectiveness of this abscisic acid, so plants demonstrate satisfactory growth even when there is little water available to them. If this works: how will this manipulation affect heat tolerance and the plant’s interaction with harmful fungi and bacteria? The association also intends to answer this question.

Ethical questions about green genetic engineering

The approach rooted in natural science will be accompanied by projects from the field of social science and ethics: the relationship between man and nature is also to be examined – particularly in view of green genetic engineering, i.e. the genetic modification of plants. The Forplanta association will explore this issue through the Institute for Scientific Issues related to Philosophy and Theology at the Munich School of Philosophy.

Application of knowledge to cultivated plants

If the research is successful, the intention later is to apply the findings to cultivated plants.

However, in many areas of the world, the climate is changing at a rate quicker than the speed at which plant cultivation can deliver grains adapted to stress. “Green genetic engineering should close this gap,” says Professor Hedrich. “But even with this targeted and therefore faster optimization there is no time to lose. This is because it is also important that we make useful plants and crops fit to fight the pests that climate change will bring.”

Scientists involved in Forplanta

• Prof. Jürgen Soll, Ludwig Maximilian University of Munich, Department of Biology I, Biochemistry and Physiology of Plants (designated spokesperson for the association)
• Prof. Uwe Sonnewald, University of Erlangen-Nuremberg, Department of Biology, Biochemistry
• Prof. Erwin Grill, Technical University Munich, Department of Plant Sciences, Botany
• Prof. Rainer Hedrich, University of Würzburg, Julius-von-Sachs-Institute for Biosciences, Molecular Plant Physiology and Biophysics

• Prof. Christian Kummer, Munich School of Philosophy, Institute for Scientific Issues related to Philosophy and Theology

Contact at the University of Würzburg:

Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institute for Biosciences at the University of Würzburg, T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>