Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appearance not always enough to identify species

16.11.2010
Linnaean taxonomy is still a cornerstone of biology, but modern DNA techniques have erased many of the established boundaries between species. This has made identifying species difficult in practice, which can cause problems, as shown by a researcher from the University of Gothenburg, Sweden.

“If you can’t recognise a species by looking at it, this can have serious consequences,” says Emma Vodoti from the Department of Zoology at the University of Gothenburg.

“For example, there is a species of leech that is widely used in medical studies, and it was discovered recently that sometimes a leech was being used that looks the same but has a different genetic make-up. This naturally has an effect on the results of the studies conducted. All work based on having to be able to identify species may have to change.”

350 years after Linnaeus created his system for organising and categorising species of plants and animals, the system is being pulled apart. Newly discovered organisms are still categorised and named in line with his system, but there is a big difference between species described before and after the discovery of DNA. Until the 1980s, scientists had to rely entirely on appearance, anatomy and other characteristics, such as a bird’s song. Since then, genetic patterns have also been taken into account when identifying new species.

“Ironically, these genetic studies have erased many of the established boundaries between species and even disproved the existence of previously described species that have turned out not to be related. Attempts have been made to establish universal boundaries between species by quantifying how much DNA needs to be different between two organisms in order for them to be viewed as separate species, but this doesn’t always work.”

In her thesis, Vodoti looks at the practical problems with species identification today, after having studied the relationship between the genetic relatedness and the appearance and geographical distribution of various sea creatures. The common horse mussel Modiolus modiolus found in the Atlantic and on the west coast of Sweden turns out to be totally different genetically from the one found on the Pacific coast of the USA, despite looking identical.

Nemertean worms may have similarities in appearance but turn out to consist of a hotchpotch of different species, more or less independent of looks. Nemerteans include worms just a few millimetres in length to one of the world’s longest creatures, Lineus longissimus, which can grow up to 15 metres.

“It’s probably impossible to find a universal way of defining, identifying and delimiting species,” says Vodoti. “My thesis shows that there is a need for individual assessment on a case-by-case basis when identifying species, taking account of both appearance and genes.”

Contact:
Emma Vodoti
0730-930639
iktis@hotmail.com

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/23294
http://www.gu.se

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>