Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appearance not always enough to identify species

16.11.2010
Linnaean taxonomy is still a cornerstone of biology, but modern DNA techniques have erased many of the established boundaries between species. This has made identifying species difficult in practice, which can cause problems, as shown by a researcher from the University of Gothenburg, Sweden.

“If you can’t recognise a species by looking at it, this can have serious consequences,” says Emma Vodoti from the Department of Zoology at the University of Gothenburg.

“For example, there is a species of leech that is widely used in medical studies, and it was discovered recently that sometimes a leech was being used that looks the same but has a different genetic make-up. This naturally has an effect on the results of the studies conducted. All work based on having to be able to identify species may have to change.”

350 years after Linnaeus created his system for organising and categorising species of plants and animals, the system is being pulled apart. Newly discovered organisms are still categorised and named in line with his system, but there is a big difference between species described before and after the discovery of DNA. Until the 1980s, scientists had to rely entirely on appearance, anatomy and other characteristics, such as a bird’s song. Since then, genetic patterns have also been taken into account when identifying new species.

“Ironically, these genetic studies have erased many of the established boundaries between species and even disproved the existence of previously described species that have turned out not to be related. Attempts have been made to establish universal boundaries between species by quantifying how much DNA needs to be different between two organisms in order for them to be viewed as separate species, but this doesn’t always work.”

In her thesis, Vodoti looks at the practical problems with species identification today, after having studied the relationship between the genetic relatedness and the appearance and geographical distribution of various sea creatures. The common horse mussel Modiolus modiolus found in the Atlantic and on the west coast of Sweden turns out to be totally different genetically from the one found on the Pacific coast of the USA, despite looking identical.

Nemertean worms may have similarities in appearance but turn out to consist of a hotchpotch of different species, more or less independent of looks. Nemerteans include worms just a few millimetres in length to one of the world’s longest creatures, Lineus longissimus, which can grow up to 15 metres.

“It’s probably impossible to find a universal way of defining, identifying and delimiting species,” says Vodoti. “My thesis shows that there is a need for individual assessment on a case-by-case basis when identifying species, taking account of both appearance and genes.”

Contact:
Emma Vodoti
0730-930639
iktis@hotmail.com

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/23294
http://www.gu.se

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>