Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Apathetic Aphids with Attitude – Ignoring Science and Infuriating Farmers – Become Easier Prey for Ladybugs

09.08.2010
Apathetic aphids – which become accustomed to ignoring genetically engineered chemical alarms in plants and alarms sent by fellow aphids – become easy prey for ladybugs. That’s good news for farmers, according to researchers at the Boyce Thompson Institute for Plant Research and Cornell University. (Proceedings of the National Academy of Sciences, Aug. 3, 2010.)

The study, “Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes,” was authored by Georg Jander, associate scientist at the Boyce Thompson Institute (BTI) located on the Cornell campus, and Robert Raguso, Cornell professor of neurobiology and behavior. Co-authors also include Martin de Vos, a former BTI post-doctoral researcher; Wing Yin Cheng, a former undergraduate researcher in Jander’s lab; and Holly Summers, a graduate student in Raguso’s lab.

Under normal circumstances, when a ladybug captures and bites into an aphid, the victim releases an alarm pheromone called beta-farnesene, prompting nearby aphids to walk away or drop off the plant. When aphids are raised on plants genetically engineered to emit beta-farnesene, they become accustomed to the chemical and no longer respond to it – even when a predator is present – making them easy prey.

Aphids reared continuously on genetically engineered Arabidopsis thaliana plants that produced beta-farnesene became habituated to the pheromone within three generations and no longer responded to the compound. In the absence of predators, the habituated aphids produce more progeny, likely because they expended less energy on running away and focus more on feeding compared to normal aphids. However, said Jander: “When we put ladybugs into the mix, the ones that are habituated to the alarm pheromone get eaten more.” Anxious aphids – those actually responding to pheromone alarms – had a higher survival rate in the presence of predators.

Genetically engineered crop plants or those that naturally produce the aphid alarm pheromone, for instance some potato varieties, could be used to increase the effectiveness of aphid predators as part of future crop protection strategies.

The National Science Foundation and the U.S. Department of Agriculture funded the research.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

Further reports about: Apathetic Aphids Arabidopsis thaliana Attitude BTI Farmers Branch Infuriating crop plant

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>