Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic-eating bug unearthed in soil

07.12.2012
A newly discovered bacterium degrades an antibiotic both to protect itself and get nutrition
It’s well known how bacteria exposed to antibiotics for long periods will find ways to resist the drugs—by quickly pumping them out of their cells, for instance, or modifying the compounds so they’re no longer toxic.

Now new research has uncovered another possible mechanism of antibiotic “resistance” in soil. In a paper publishing this week in the Journal of Environmental Quality, a group of Canadian and French scientists report on a soil bacterium that breaks down the common veterinary antibiotic, sulfamethazine, and uses it for growth.

Certain soil bacteria are already known to live off, or “eat,” agricultural pesticides and herbicides, says the study’s leader, Ed Topp, a soil microbiologist with Agriculture and Agri-Food Canada in London, Ontario. In fact, the microbes’ presence in farm fields can cause these agrichemicals to fail.

But to Topp’s knowledge, this is the first report of a soil microorganism that degrades an antibiotic both to protect itself and get nutrition.

“I think it’s kind of a game changer in terms of how we think about our environment and antibiotic resistance,” he says.

Concerns about widespread antibiotic resistance are what led Topp and his collaborators to set up an experiment 14 years ago, in which they dosed soils annually with environmentally relevant concentrations of three veterinary antibiotics: sulfamethazine, tylosin, and chlortetracycline. Commonly fed to pigs and other livestock, antibiotics are thought to keep animals healthier. But they’re also excreted in manure, which is then spread once a year as fertilizer in countless North American farm fields.

The researchers first wanted to know whether these yearly applications were promoting higher levels of antibiotic resistance in soil bacteria. But a few years ago, they also decided to compare the persistence of the drugs in soil plots that had been repeatedly dosed, versus fresh soils where antibiotics were never applied.

They did this experiment, Topp explains, because of previous work indicating that pesticides often break down more quickly in soils with a long history of exposure, indicating that pesticide-degrading microbes have been selected for over time.

Still, it came as a surprise when they saw antibiotics also degrading much faster in long-term, treated plots than in fresh, control soils, he says. In particular, sulfamethazine—a member of the antibiotic class called sulfonamides—disappeared up to five times faster.

The researchers subsequently cultured from the treated plots a new strain of Microbacterium, an actinomycete that uses sulfamethazine as a nitrogen and carbon source. Extremely common in soil, actinomycete bacteria are known to degrade a wide range of organic compounds. And now at least two other sulfanomide-degrading Microbacterium strains have been reported, Topp says: one from soil and another from a sewage treatment plant.

Taken together, the findings suggest that the capability to break down sulfanomides could be widespread. And if it’s indeed true that “the microbiology in the environment is learning to break these drugs down more rapidly when exposed to them, this would effectively reduce the amount of time that the environment is exposed to these drugs and therefore possibly attenuate the impacts,” Topp says.

Not that negative impacts aren’t still occurring, he cautions. In particular, long-term exposure to antibiotics puts significant pressure on soil bacteria to evolve resistance, which they typically do by giving and receiving genes that let them detoxify drugs, or keep the compounds out of their cells.

What the new research suggests, though, is that soil bacteria could be swapping genes for breaking down antibiotics at the same time.

“My guess is that’s probably what’s happening, but it remains to be determined,” Topp says. “It’s actually extremely fascinating.”

The work was funded by Agriculture and Agri-Food Canada.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://dl.sciencesocieties.org/publications/jeq/abstracts/0/0/jeq2012.0162.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Madeline Fisher | EurekAlert!
Further information:
http://www.agronomy.org/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>