Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-inflammatory agent with side effects: Rapid test to save Indian vultures from extinction

28.09.2010
Vulture population declined at a catastrophic rate on the Indian subcontinent over the past fifteen years.

In the meantime three species are facing extinction. In 2004 scientists in the United States identified the cause: the drug Diclofenac. The use of this anti-inflammatory agent in veterinary medicine has meanwhile been banned, however, due to the lack of a suitable detection method, the ban could so far not been enforced effectively. This gap is now being closed with a rapid test developed by scientists at the Technische Universitaet Muenchen (TUM).

Diclofenac, an anti-inflammatory agent, has been deployed successfully in human medicine for decades. In most EU countries medication containing Diclofenac is only approved for treatment of humans. In India, Pakistan and Nepal it has been deployed in veterinary medicine as well since the 90s, in particular for livestock. When vultures feed on cattle carcasses, they too ingest the drug. As a result, the populations of three species of these birds of prey – the Indian vulture, the Oriental white-backed vulture and the slender-billed vulture – have shrunk to a mere three percent of their original number.

In light of this situation, the governments of the affected countries banned the use of Diclofenac in veterinary medicine in 2006. Furthermore, centers for breeding and subsequent re-introduction of vultures into the wild have been set up and are enjoying considerable support from the British Royal Society for the Protection of Birds (RSPB). However, it will take at least ten years before the first birds can be released back into the wild. Raising the bird offspring with Diclofenac-free food, necessitates testing meat for possible traces of the drug. This calls for analytical detection methods that can be administered in remote breeding centers by staff with little or no professional training. The scientists of the Chair for Analytical Chemistry at the Institute for Hydrochemistry and Chemical Balneology at the TU Muenchen have now developed just such a method.

Technische Universitaet Muenchen Corporate Communications Center 80290 Muenchen Dr. Ulrich Marsch Head of Corporate Communications +49 89 289 22779 marsch@zv.tum.de Patrick Regan International Public Relations +49 89 289 22743 regan@zv.tum.de The scientists started by producing a very specific Diclofenac antibody that they could use to develop a highly sensitive immunological test to detect the drug. The test uses miniaturized plastic microtiter plates and has the advantage of not requiring complex sample treatment, which translates into quick and low-cost analyses.

A pilot study in collaboration with the RSPB, the Bombay Natural History Society and the Wildlife Institute of India proved the suitability of the immune test for detecting Diclofenac in animal tissue. The procedure is currently undergoing extensive testing at an Indian vulturebreeding center. However, this method is also suitable for many other fields of application, as shown for instance in studies on Diclofenac contamination of wastewater in Bavaria and Austria. In the meantime the antibody is also being used in clinical environments to study allergic reactions to the drug.

Diclofenac binds strongly with protein molecules and the conjugate can be immobilized in the wells of the microtiter plate. When the sample and the antibody are added, the antibody can either react with the drug molecules of the sample or with the molecules previously bonded to the fixed Diclofenac-protein conjugate. The higher the Diclofenac concentration in the sample, the fewer antibodies remain to bind with the Diclofenac-bonded protein in the well. The concentration of bound antibodies can then be determined in a color reaction with a peroxidase enzyme and tetramethylbenzidine. “With our new method we have simplified the detection of Diclofenac in animal tissue significantly,” says Professor Dietmar Knopp, whose team developed the test. “This also means more tests can be carried out and that monitoring will improve.”

Currently, the scientists are working on further simplifying the test with the backing of the RSPB and in collaboration with the start-up company SENOVA. The goal is a single-use immunological rapid test to detect the presence of the drug that can be done in a few minutes and does not require expensive read-out equipment.

This kind of test may be needed in Europe in the near future, as well. With over 80 tons of Diclofenac sold every year in Germany alone, it is among the pharmaceutical substances most frequently found in surface water samples. “Studies have shown that Diclofenac leads to kidney damage in trout,” says Professor Reinhard Niessner, head of the Institute of Hydrochemistry at the TUM. “As this substance degrades only very slowly, there may be need for action soon. As new waste water treatments are developed and implemented in the future, simple methods for monitoring their efficiency will be required.”

Publication on the immunological detection of Diclofenac:

Knopp, D., Deng, A., Letzel, M., Himmelsbach, M., Zhu, Q.-Z., Peröbner, I., Kudlak, B., Frey, S., Sengl, M., Buchberger, W., Taggart, M., Hutchinson, C., Cunningham, A., Pain, D., Cuthbert, R., Raab, A., Meharg, A., Swan, G., Jhala, Y., Prakash, V., Rahmani, A., Quervedo, M., Niessner, R., “Immunological determination of the pharmaceutical Diclofenac in environmental and biological samples.” In: National Environmental Management of Agrochemicals: Risk Assessment, Monitoring and Remedial Action" ACS Symposium Series, ACS Washington, 2007, Vol. 966, 203-226 http://pubs.acs.org/doi/abs/10.1021/bk-2007-0966.ch013 Images: http://mediatum2.ub.tum.de/node?cunfold=997681&dir=997681&id=997681 Link to the vulture rescue project: http://www.vulturerescue.org

Contact: Prof. Dr. Dietmar Knopp Technische Universitaet Muenchen Institute of Hydrochemistry and Chair for Analytical Chemistry Marchioninistraße 17, 81377 Munich, Germany Tel: +49 89-2180 78252 Fax: +49 89-2180-78255 E-mail: Dietmar.Knopp@ch.tum.de Internet: http://www.ws.chemie.tu-muenchen.de

Technische Universitaet Muenchen (TUM) is one of Germany’s leading universities. It has roughly 420 professors, 7,500 academic and non-academic staff (including those at the university hospital “Rechts der Isar”), and 24,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an “Elite University” in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university’s global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>