Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals conceal sickness symptoms in certain social situations

18.06.2014

Animals have the ability to conceal their sickness in certain social situations. According to a new review, when given the opportunity to mate or in the presence of their young, sick animals will behave as though they were healthy. The research has implications for our understanding of the spread of infectious diseases.

The review’s sole author, Dr. Patricia Lopes from the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich, says that animals from a number of different species will eat and drink less, reduce their activity and sleep more when they are sick in order to conserve energy for their recovery. However, this can all change depending on the social situation.

In a paper published this week in the journal Proceedings of the Royal Society B, Lopes reviewed a range of different social situations that affected the behavior of sick animals, including the presence of offspring, intruders or potential mates.

Animals ranging from birds to monkeys have all been demonstrated to conceal their sickness behavior when other animals are present. For instance, Lopes’ previous research has demonstrated that sick zebra finches will behave as though they are healthy in the presence of other zebra finches, particularly when there is the opportunity to mate.

Ability to use unique opportunities

According to Lopes, “The idea is that behaving sick helps animals recover from the disease and so this should be the default way to behave when sick. However, if being sick coincides with, for example, a unique opportunity to mate, then animals may adjust their priorities and behave as though they are not sick.” Lopes goes on to suggest that such a change may have tradeoffs for an animal with limited energy to invest in recovering from illness versus mating or caring for young.

The review also considers the implications in the context of infectious disease. “Recognizing when animals are concealing their sickness is critical to how we both detect and control the spread of infectious diseases,” says Lopes. Ultimately, improving our understanding of how the social situation affects a sick animal’s behavior can improve our models of disease detection and transmission. This extends to the spread of disease in humans living in an increasingly crowded and connected world. According to the U.S. Center for Disease Control, over 60% of communicable diseases in humans originate from animals.

Literature:
Patricia C. Lopes. When is it socially acceptable to feel sick? Proceedings of the Royal Society B. http://dx.doi.org/10.1098/rspb.2014.021

Contact:
Patricia C. Lopes
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Phone +41 44 635 52 77
Email: patricia.lopes@ieu.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Agricultural and Forestry Science:

nachricht For pollock surveys in Alaska, things are looking up
22.05.2015 | NOAA National Marine Fisheries Service

nachricht Brazilian Beef Industry Moves to Reduce Its Destruction of Rain Forests
13.05.2015 | University of Wisconsin-Madison

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

For pollock surveys in Alaska, things are looking up

22.05.2015 | Agricultural and Forestry Science

Mission possible: This device will self-destruct when heated

22.05.2015 | Power and Electrical Engineering

NOAA's GOES-R satellite begins environmental testing

22.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>