Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals conceal sickness symptoms in certain social situations

18.06.2014

Animals have the ability to conceal their sickness in certain social situations. According to a new review, when given the opportunity to mate or in the presence of their young, sick animals will behave as though they were healthy. The research has implications for our understanding of the spread of infectious diseases.

The review’s sole author, Dr. Patricia Lopes from the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich, says that animals from a number of different species will eat and drink less, reduce their activity and sleep more when they are sick in order to conserve energy for their recovery. However, this can all change depending on the social situation.

In a paper published this week in the journal Proceedings of the Royal Society B, Lopes reviewed a range of different social situations that affected the behavior of sick animals, including the presence of offspring, intruders or potential mates.

Animals ranging from birds to monkeys have all been demonstrated to conceal their sickness behavior when other animals are present. For instance, Lopes’ previous research has demonstrated that sick zebra finches will behave as though they are healthy in the presence of other zebra finches, particularly when there is the opportunity to mate.

Ability to use unique opportunities

According to Lopes, “The idea is that behaving sick helps animals recover from the disease and so this should be the default way to behave when sick. However, if being sick coincides with, for example, a unique opportunity to mate, then animals may adjust their priorities and behave as though they are not sick.” Lopes goes on to suggest that such a change may have tradeoffs for an animal with limited energy to invest in recovering from illness versus mating or caring for young.

The review also considers the implications in the context of infectious disease. “Recognizing when animals are concealing their sickness is critical to how we both detect and control the spread of infectious diseases,” says Lopes. Ultimately, improving our understanding of how the social situation affects a sick animal’s behavior can improve our models of disease detection and transmission. This extends to the spread of disease in humans living in an increasingly crowded and connected world. According to the U.S. Center for Disease Control, over 60% of communicable diseases in humans originate from animals.

Literature:
Patricia C. Lopes. When is it socially acceptable to feel sick? Proceedings of the Royal Society B. http://dx.doi.org/10.1098/rspb.2014.021

Contact:
Patricia C. Lopes
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Phone +41 44 635 52 77
Email: patricia.lopes@ieu.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>