Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research zeroes in on potato disease insect

28.06.2012
Analysis of psyllid migration could help producers with management decisions

Do potato psyllids migrate from one location to the next, starting in northern Mexico and moving northward as the potato season progresses, or are psyllid populations local?

Knowing whether the insects are migratory or local could help more efficiently manage the insects which are increasingly inflicting damage on the country's potato industry, according to scientists working on the project.

A study that is being done as a part of the national Zebra Chip Specialty Crop Research Initiative involves Dr. Arash Rashed, Texas AgriLife Research vector ecologist, and Dr. Charlie Rush, AgriLife Research plant pathologist in Amarillo and lead on the national initiative.

The bacterial pathogen carried by the psyllid is Candidatus Liberibacter solanacearum. When the psyllid feeds on a potato plant, the bacteria is transmitted into the plant and causes the disease known as zebra chip of potato, Rush said.

While it has no effect on human health, zebra chip can cause entire loads of potatoes to be rejected by the potato chip industry because of the negative effect it has on chips and fries, which appear as burned when fried, he said.

"It is generally believed that psyllids migrate from Mexico to the Canadian border," Rashed said. "While that is a possibility, we want to see if there are local populations and if there are winter breeding sites."

He said through field, greenhouse and laboratory studies, and in collaboration with potato producers and other scientists, they are studying various aspects of pathogen-plant-vector interactions. One of these studies is addressing the effects of natural vegetation, topography, temperature fluctuations and air currents on psyllid populations and their movement pattern.

"We have set up traps in Pearsall, Seminole and Kermit, Springlake, Bushland and Dalhart," Rashed said. "We monitor changes in psyllid numbers in natural vegetation around the potato fields. We also test wild plants for their infection status, with the objective to identify pathogen reservoirs during winter when the cultivated host is absent."

He said initially they saw psyllids in Pearsall, but not Olton and Springlake. Then they began seeing more than a thousand on traps from those regions, an unusually high number.

"Psyllid numbers, however, dropped in natural vegetation during April and May," Rashed said. "This coincided with potato-emergence time, when psyllids began to infest field edges. We don't know if it was a one-time thing, or a yearly reoccurring phenomenon.

"Our survey will continue throughout the next year to address this question," he said.

"We also evaluate the percentage of insects that are carrying the pathogen," Rashed said. "Although only a low percentage of psyllids are actually carriers, if the population is high, it also means there are a lot of positive psyllids."

Moreover, he said, the damage caused by psyllids is not just through transmitting the pathogen as they also induce another condition in potato plants, called "psyllid yellows," by simply feeding on the plant tissue.

While it is too early to make any conclusions on what environmental factors affect the populations, he said they believe early spraying of the fields and seed treatments are the most reasonable way to lower the impact.

Other control approaches such as eliminating volunteer potatoes, which can be ideal hosts for psyllids prior to cultivated potato emergence, need to be integrated to increase the effectiveness of chemical control early in the season, Rashed said.

Dr. Charlie Rush | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>