Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research study identifies contributing factors to groundwater table declines

14.07.2014

It's no secret groundwater levels have declined across the state over the past eight decades, and that the primary reason was the onset of irrigation in agriculture and population growth. But a recent Texas A&M AgriLife Research study has identified other factors having an impact.

The groundwater declines have been most severe in the past four decades, but the news isn't all bad, according to Dr. Srinivasulu Ale, AgriLife Research geospatial hydrology assistant professor in Vernon.

"Long-term (1930) trends in groundwater levels in Texas: Influences of soils, land cover and water use," authored by Dr. Sriroop Chaudhuri, former post-doctoral research associate at Vernon, and Ale, was published in the Science of the Total Environment journal recently.

The full article is available at http://bit.ly/1nZy2NK.

Ale said they conducted the study because by 2060 the state's population is expected to double, increasing the demand for water at a time when the existing water supply is expected to be reduced by about 10 percent.

"We wanted to know which areas are more vulnerable to water shortages," he said. "In order to plan and implement strategies to deal with the water level declines, we needed to know how these levels were declining spatially and temporally."

Previous hydrologic studies on Texas groundwater levels were conducted mostly on an aquifer-specific basis, and lacked the statewide panoramic view Ale and Chaudhuri wanted to present. They wanted an overview of trends in groundwater levels from 1930 to 2010, and they wanted to identify spatial patterns from the 136,930 groundwater level observations from the Texas Water Development Board's database.

They utilized the boundaries of the Texas Water Development Board's designated Groundwater Management Areas, or GMAs, for their assessment. The 16 GMAs, with boundaries identified in response to legislation passed in 2001, included all major and minor aquifers in the state. The objective behind GMA identification was to delineate areas considered suitable for management of groundwater resources.

"Our results indicated a progressive decline in statewide decadal median water levels in Texas from about 46 feet to 118 feet between the 1930s and 2000s," Chaudhuri said. "We identified hot spots of deep water levels in GMA 8 (North Central Texas) and the Texas Panhandle regions since the 1960s, mainly due to extensive groundwater withdrawals for urban and irrigational purposes, respectively."

For the purposes of this study, the Panhandle region includes 12 western and central counties in GMA 1 and three northwestern counties in GMA 2, he said.

Statewide, the number of counties with deeper median water levels, a water-level depth below 328 feet, increased from two to 13 between 1930s and 2000s, he said. At the same time, there was a decrease in the number of counties, from 134 to 113, having shallower median water-levels or groundwater located within 82 feet of the ground surface.

"We know irrigated agriculture is the major cause of depletion in the Texas Panhandle, as compared to increasing urbanization in GMA 8," Chaudhuri said. "We saw a significant drop in median groundwater levels in irrigation wells from 75 to 180 feet between the 1940s and 1950s in the Texas Panhandle, coinciding with the initiation of widespread irrigated agricultural practices."

But he said they knew there was more to the decline than just these uses, because "unused" wells monitored across the state throughout the decades were also showing varying levels of decline. That was when they studied groundwater and surface-water use patterns, soil characteristics, geology and land cover types to better understand the water-level changes in Texas.

For instance, the South Plains and Panhandle were equally involved in agriculture and irrigated crops over the Ogallala Aquifer. However, the sandier soils of the South Plains allow more infiltration and recharge than the tighter clay soils of the Panhandle.

In addition to population growth in GMA 8, the high clay content in soils coupled with shale/claystone type geology and more land area covered by highways and parking lots have lowered the amount of recharge, thus contributing to the decline in water levels.

There is a brighter note, Ale said.

"Interestingly, the trends we observed over the decades show the water-level declines are leveling off recently in some parts of the state, including GMA 8, suggesting a recovery from historical drawdown due to implementation of conservation and regulatory strategies," Ale said.

The leveling off of the decline has been seen in the past decade after the implementation of the GMAs and the guidelines and regulations that were established with them, he said. Increased use of surface water and assessment of water levels are some measures being utilized to address groundwater depletion issues in the Houston, GMA 14, and Dallas, GMA 8, areas.

However, these voluntary conservation or regulatory strategies have resulted in a variable pattern of recovery in ambient water-levels, which are still occurring frequently at deeper depths in the hot spots and thus warrant further investigation, he said.

Ale said the need for more spatially intensive and frequent water-level monitoring has been realized over the course of this study. In addition, further investigation of aquifer-specific influences such as groundwater recharge and flow paths, human dimensions on water-level fluctuations and climate are warranted.

"Overall, our study indicated that use of robust spatial and statistical methods can reveal important details about the trends in water-level changes and shed light on the associated factors," Chaudhuri said. "Due to their very generic nature, techniques used in this study can also be applied to other areas with similar eco-hydrologic issues to identify regions that warrant future management actions."

Srinivasulu Ale | Eurek Alert!
Further information:
http://www.tamu.edu

Further reports about: AgriLife Chaudhuri Communications Texas identify levels regulatory spatial strategies

More articles from Agricultural and Forestry Science:

nachricht Open-access article on Mexican bean beetles offers control tips
03.02.2016 | Entomological Society of America

nachricht Improved harvest for small farms thanks to naturally cloned crops
29.01.2016 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>