Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research study identifies contributing factors to groundwater table declines

14.07.2014

It's no secret groundwater levels have declined across the state over the past eight decades, and that the primary reason was the onset of irrigation in agriculture and population growth. But a recent Texas A&M AgriLife Research study has identified other factors having an impact.

The groundwater declines have been most severe in the past four decades, but the news isn't all bad, according to Dr. Srinivasulu Ale, AgriLife Research geospatial hydrology assistant professor in Vernon.

"Long-term (1930) trends in groundwater levels in Texas: Influences of soils, land cover and water use," authored by Dr. Sriroop Chaudhuri, former post-doctoral research associate at Vernon, and Ale, was published in the Science of the Total Environment journal recently.

The full article is available at http://bit.ly/1nZy2NK.

Ale said they conducted the study because by 2060 the state's population is expected to double, increasing the demand for water at a time when the existing water supply is expected to be reduced by about 10 percent.

"We wanted to know which areas are more vulnerable to water shortages," he said. "In order to plan and implement strategies to deal with the water level declines, we needed to know how these levels were declining spatially and temporally."

Previous hydrologic studies on Texas groundwater levels were conducted mostly on an aquifer-specific basis, and lacked the statewide panoramic view Ale and Chaudhuri wanted to present. They wanted an overview of trends in groundwater levels from 1930 to 2010, and they wanted to identify spatial patterns from the 136,930 groundwater level observations from the Texas Water Development Board's database.

They utilized the boundaries of the Texas Water Development Board's designated Groundwater Management Areas, or GMAs, for their assessment. The 16 GMAs, with boundaries identified in response to legislation passed in 2001, included all major and minor aquifers in the state. The objective behind GMA identification was to delineate areas considered suitable for management of groundwater resources.

"Our results indicated a progressive decline in statewide decadal median water levels in Texas from about 46 feet to 118 feet between the 1930s and 2000s," Chaudhuri said. "We identified hot spots of deep water levels in GMA 8 (North Central Texas) and the Texas Panhandle regions since the 1960s, mainly due to extensive groundwater withdrawals for urban and irrigational purposes, respectively."

For the purposes of this study, the Panhandle region includes 12 western and central counties in GMA 1 and three northwestern counties in GMA 2, he said.

Statewide, the number of counties with deeper median water levels, a water-level depth below 328 feet, increased from two to 13 between 1930s and 2000s, he said. At the same time, there was a decrease in the number of counties, from 134 to 113, having shallower median water-levels or groundwater located within 82 feet of the ground surface.

"We know irrigated agriculture is the major cause of depletion in the Texas Panhandle, as compared to increasing urbanization in GMA 8," Chaudhuri said. "We saw a significant drop in median groundwater levels in irrigation wells from 75 to 180 feet between the 1940s and 1950s in the Texas Panhandle, coinciding with the initiation of widespread irrigated agricultural practices."

But he said they knew there was more to the decline than just these uses, because "unused" wells monitored across the state throughout the decades were also showing varying levels of decline. That was when they studied groundwater and surface-water use patterns, soil characteristics, geology and land cover types to better understand the water-level changes in Texas.

For instance, the South Plains and Panhandle were equally involved in agriculture and irrigated crops over the Ogallala Aquifer. However, the sandier soils of the South Plains allow more infiltration and recharge than the tighter clay soils of the Panhandle.

In addition to population growth in GMA 8, the high clay content in soils coupled with shale/claystone type geology and more land area covered by highways and parking lots have lowered the amount of recharge, thus contributing to the decline in water levels.

There is a brighter note, Ale said.

"Interestingly, the trends we observed over the decades show the water-level declines are leveling off recently in some parts of the state, including GMA 8, suggesting a recovery from historical drawdown due to implementation of conservation and regulatory strategies," Ale said.

The leveling off of the decline has been seen in the past decade after the implementation of the GMAs and the guidelines and regulations that were established with them, he said. Increased use of surface water and assessment of water levels are some measures being utilized to address groundwater depletion issues in the Houston, GMA 14, and Dallas, GMA 8, areas.

However, these voluntary conservation or regulatory strategies have resulted in a variable pattern of recovery in ambient water-levels, which are still occurring frequently at deeper depths in the hot spots and thus warrant further investigation, he said.

Ale said the need for more spatially intensive and frequent water-level monitoring has been realized over the course of this study. In addition, further investigation of aquifer-specific influences such as groundwater recharge and flow paths, human dimensions on water-level fluctuations and climate are warranted.

"Overall, our study indicated that use of robust spatial and statistical methods can reveal important details about the trends in water-level changes and shed light on the associated factors," Chaudhuri said. "Due to their very generic nature, techniques used in this study can also be applied to other areas with similar eco-hydrologic issues to identify regions that warrant future management actions."

Srinivasulu Ale | Eurek Alert!
Further information:
http://www.tamu.edu

Further reports about: AgriLife Chaudhuri Communications Texas identify levels regulatory spatial strategies

More articles from Agricultural and Forestry Science:

nachricht Improving artichoke root development, transplant quality
21.07.2016 | American Society for Horticultural Science

nachricht Genome of 6,000-year-old barley grains sequenced for first time
19.07.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>