Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research scientists trumpeting possible new adaptation of tropical flower

04.03.2011
Breeding program at Vernon expands to under-utilized crops

Texas AgriLife Research scientists are trying to bring more beauty to the colder regions of the state by breeding winter-hardiness into a tropical ornamental plant, the angel’s trumpet flower.

Dr. Dariusz Malinowski, Texas AgriLife Research plant physiologist and forage agronomist in Vernon, is working to breed angel's trumpet with varying shapes and colors. (Texas AgriLIfe Research photo by Dr. Dariusz Malinowski)

Dr. Dariusz Malinowski, AgriLife Research plant physiologist and forage agronomist in Vernon, along with Dr. Bill Pinchak and Shane Martin, both with AgriLife Research, and Steve Brown, program director for Texas Foundation Seed Service, began the project three years ago.

The goal is to develop new cultivars with a range of flower colors, shapes and size, Malinowski said. The project has already resulted in about 25 breeding lines being sent to the Texas A&M University System Office of Technology Commercialization. The next step is to offer the new lines commercially.

Several commercial nurseries have expressed interest in evaluating many of these lines this spring, Brown said. Evaluation will include commercial production and propagation to produce commercial quantities of angel’s trumpets.

“Once successful evaluations are completed, Texas homeowners should be able to find these unusual and beautiful flowering shrubs in their local garden centers in the spring of 2013 or 2014,” he said.

The flower program, which also includes hibiscus, has been added to the research objectives at Vernon as the researchers try to breed in drought-tolerance and winter-hardiness into non-traditional or under-utilized crops that have ornamental value, he said.

Angel’s trumpet is the generic name for the Brugmansia genus of flowering plants native to the subtropical regions of South America, along the Andes from Colombia to northern Chile and also in southeastern Brazil.

Dr. Dariusz Malinowski, Texas AgriLife Research plant physiologist and forage agronomist in Vernon, shows the size of his angel's trumpet breeding lines that he is developing. (Texas AgriLIfe Research photo by Kay Ledbetter)

The plants are perennial shrubs or small trees that typically reach heights of 9-30 feet with a tan bark, Malinowski said. The leaves are alternate, generally large, 4-12 inches long and about 2-7 inches broad.

The large, pendulous flowers are very dramatic, trumpet-shaped flowers that can range from 1 foot to 2.5 feet long and 4 inches to 12 inches across at the wide end, he said. The flowers most traditionally are white, yellow and pink, with some rarer orange or red lines.

“The angel trumpets are very attractive ornamental plants grown in gardens in the southern regions of the state or as container plants further north,” Malinowski said.“They will not tolerate frost or freeze.”

He said they are testing breeding lines for winter survival of the roots to determine which ones will be able to survive in the Vernon-to-Dallas region. The growing region must not have temperatures that drop below 15 F. Several lines grown in the researchers’ gardens have regrown from the roots in the spring and bloomed by the end of the summer.

“We hope to extend the ornamental use of angel’s trumpet into this region by breeding and selecting lines with a greater ability to survive the winter,” Malinowski said.

He said the height of the trees will be affected by the die-off of the stems each year, so the winter-hardy lines might only get to about 5 feet tall.

But that is not affecting the beauty of the flowers, Malinowski said. Some of the most interesting new lines include one with flowers divided into six to eight parts, instead of the typical five parts.

“These additional parts make the flower much larger than the typical bloom,” he said. “And recently, we’ve been able to add a trait of double flowers to this atypical flower form.”

Malinowski said other lines have extremely long “whiskers,” up to 5 inches long, as well as new colors such as coral or deep golden and orange tones.

“One of our goals is to create flowers with multiple colors,” he said. “One of the lines has double flowers, where the outside skirt is white and the inside skirt is yellowish. Another line also has double flowers, with the outside skirt in light pink and the inside skirt in dark pink.”

Contacts

Dr. Dariusz Malinowski, 940-552-9941, dmalinow@ag.tamu.edu
Steve Brown, 940-552-6226, rsbrown@ag.tamu.edu

Dr. Dariusz Malinowski | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>