Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research scientists trumpeting possible new adaptation of tropical flower

04.03.2011
Breeding program at Vernon expands to under-utilized crops

Texas AgriLife Research scientists are trying to bring more beauty to the colder regions of the state by breeding winter-hardiness into a tropical ornamental plant, the angel’s trumpet flower.

Dr. Dariusz Malinowski, Texas AgriLife Research plant physiologist and forage agronomist in Vernon, is working to breed angel's trumpet with varying shapes and colors. (Texas AgriLIfe Research photo by Dr. Dariusz Malinowski)

Dr. Dariusz Malinowski, AgriLife Research plant physiologist and forage agronomist in Vernon, along with Dr. Bill Pinchak and Shane Martin, both with AgriLife Research, and Steve Brown, program director for Texas Foundation Seed Service, began the project three years ago.

The goal is to develop new cultivars with a range of flower colors, shapes and size, Malinowski said. The project has already resulted in about 25 breeding lines being sent to the Texas A&M University System Office of Technology Commercialization. The next step is to offer the new lines commercially.

Several commercial nurseries have expressed interest in evaluating many of these lines this spring, Brown said. Evaluation will include commercial production and propagation to produce commercial quantities of angel’s trumpets.

“Once successful evaluations are completed, Texas homeowners should be able to find these unusual and beautiful flowering shrubs in their local garden centers in the spring of 2013 or 2014,” he said.

The flower program, which also includes hibiscus, has been added to the research objectives at Vernon as the researchers try to breed in drought-tolerance and winter-hardiness into non-traditional or under-utilized crops that have ornamental value, he said.

Angel’s trumpet is the generic name for the Brugmansia genus of flowering plants native to the subtropical regions of South America, along the Andes from Colombia to northern Chile and also in southeastern Brazil.

Dr. Dariusz Malinowski, Texas AgriLife Research plant physiologist and forage agronomist in Vernon, shows the size of his angel's trumpet breeding lines that he is developing. (Texas AgriLIfe Research photo by Kay Ledbetter)

The plants are perennial shrubs or small trees that typically reach heights of 9-30 feet with a tan bark, Malinowski said. The leaves are alternate, generally large, 4-12 inches long and about 2-7 inches broad.

The large, pendulous flowers are very dramatic, trumpet-shaped flowers that can range from 1 foot to 2.5 feet long and 4 inches to 12 inches across at the wide end, he said. The flowers most traditionally are white, yellow and pink, with some rarer orange or red lines.

“The angel trumpets are very attractive ornamental plants grown in gardens in the southern regions of the state or as container plants further north,” Malinowski said.“They will not tolerate frost or freeze.”

He said they are testing breeding lines for winter survival of the roots to determine which ones will be able to survive in the Vernon-to-Dallas region. The growing region must not have temperatures that drop below 15 F. Several lines grown in the researchers’ gardens have regrown from the roots in the spring and bloomed by the end of the summer.

“We hope to extend the ornamental use of angel’s trumpet into this region by breeding and selecting lines with a greater ability to survive the winter,” Malinowski said.

He said the height of the trees will be affected by the die-off of the stems each year, so the winter-hardy lines might only get to about 5 feet tall.

But that is not affecting the beauty of the flowers, Malinowski said. Some of the most interesting new lines include one with flowers divided into six to eight parts, instead of the typical five parts.

“These additional parts make the flower much larger than the typical bloom,” he said. “And recently, we’ve been able to add a trait of double flowers to this atypical flower form.”

Malinowski said other lines have extremely long “whiskers,” up to 5 inches long, as well as new colors such as coral or deep golden and orange tones.

“One of our goals is to create flowers with multiple colors,” he said. “One of the lines has double flowers, where the outside skirt is white and the inside skirt is yellowish. Another line also has double flowers, with the outside skirt in light pink and the inside skirt in dark pink.”

Contacts

Dr. Dariusz Malinowski, 940-552-9941, dmalinow@ag.tamu.edu
Steve Brown, 940-552-6226, rsbrown@ag.tamu.edu

Dr. Dariusz Malinowski | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>