Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research ‘genetically fingerprinting’ E. coli from Lampasas and Leon watersheds

02.08.2011
Study designed to contribute to a fair, balanced and effective protection plan

The Lampasas and Leon Rivers watersheds have been listed as impaired by the state due to high counts of E. coli and other bacteria taken in the late 1990s, but from whom, what and where the contamination originates is unclear, say Texas AgriLife Research experts.

Because the watersheds are located in a landscape that is predominately rural and agricultural, there has been some conjecture that the sources of E. coli are livestock related, said Dr. June Wolfe, a AgriLife Research scientist.

“However, the origin of the sources is unclear,” said Wolfe, who is based at the Texas AgriLife Blackland Research and Extension Center at Temple.

And although routine sampling sometimes shows elevated bacteria levels in the watersheds, exactly how high are the levels throughout the year?

To identify the sources objectively, Wolfe and his research associate, Tony Owen, have been collecting water samples at 30 river sites – 15 in the Lampasas River watershed and 15 in the Leon River watershed – monthly since February. They’ve also been taking fecal samples from all over the watersheds of known possible sources: home septic systems, wildlife, livestock, pets and water-treatment plants.

The samples are then “genetically fingerprinted” to determine exactly what the source of E. coli is — or otherwise, Wolfe said.

It’s all part of the “Bacterial Source Tracking” project, which was funded by a Section 319(h) Clean Water Act nonpoint source grant from the Texas State Soil and Water Conservation Board and U.S. Environmental Protection Agency. The grant was administered by the Texas Water Resource Institute in College Station.

“This approach will utilize proven scientific methods that will distinguish the various sources of bacteria,” Wolfe said. The DNA fingerprinting is done by Dr. George Di Giovanni at the Texas AgriLife Research laboratory in El Paso.

E. coli are measured by the number of colonies cultured from a given volume of water. Here, the E. coli colonies show up as maroon spots because of a special growth medium. (Texas AgriLife Extension Service photo by Robert Burns)

Identifying the exact sources of contamination will allow the formation of a watershed protection plan that is fair, balanced and effective, Wolfe said.

The Lampasas River originates about 70 miles west of Waco and flows southeast for 75 miles, passing through Lampasas, Burnet and Bell counties. Land use within the watershed includes grazing for beef cattle and the production of hay, wheat, oats, sorghum, corn, cotton, peanuts and pecans, Wolfe said.

The Leon River has three primary forks that meet near Eastland, which is about 110 miles west of Fort Worth. From Eastland, the river runs about 185 miles south where it and the Lampasas River join with the Salado Creek near Belton in northern Bell County to form the Little River. Like the Lampasas, the Leon runs primarily through rural farmlands. But there is also considerable forestland and a significant amount of dairy production in the northern part of the watershed, he said.

Parts of both the Lampasas and Leon watersheds have been listed by the Texas Commission of Environmental Quality as “impaired” for recreational use, Wolfe said.

“By impaired, it is meant that coliform bacterium levels exceed state and federal established criteria,” Wolfe said. “Though these organisms are generally not harmful to human health, they may indicate the presence of pathogens that can cause disease or gastrointestinal illnesses.”

The collection of water samples must be meticulous and meet stringent EPA procedural and documentation guidelines, Wolfe noted. When he and Owen collect and label water samples, they must also measure stream flow, water pH, dissolved oxygen and specific conductivity. And there is a strict time deadline, measured in hours, from when the water samples are collected and must be pre-processed by Wolfe at the Temple center’s water science laboratory.

But collecting water samples is only half the project, Wolfe said. Without an E. coli library to compare the water samples, identifying the source of the contamination would be impossible. So in addition to taking water samples, their goal is to collect at least 100 known-sources fecal samples within each watershed.

“We are focusing on human, feral hog and cattle sources,” Wolfe said. “Feral hogs are a potentially big contributor, but other wildlife sources, including small mammal and avian species will be collected as well.”

Sometimes their “poop-scooping” draws attention, Wolfe noted, as they are also interested in cataloging fecal samples from pets, a task that takes them into local city parks and other public areas.

At other times, the sampling has called for ingenuity. For example, to collect avian fecal samples, they draped large sheets of plastic under local bridges to catch droppings from birds roosting over the waterways.

As the fecal samples are collected, and the DNA fingerprinting completed by Di Giovanni, the results are included in the Texas E. coli bacterial source tracking library.

Wolfe said the development of the Lampasas River and Leon Rivers water protection plans are to proceed independent of his bacterial source tracking project.

“However, conclusions from this BST project will be integrated into the water protection plan through adaptive management,” he said.

One issue the team has had to face this year is the drying up of rivers and streams because of the drought, Wolfe noted.

“The results will still be valid because droughts are a normal occurrence, and we need to get a data set during these times too,” he said. “But ideally, we would like to be able to collect data during a normal year too.”

Wolfe and Owen maintain a website with detailed information and regular reports on the project at http://leon-lampasasbst.tamu.edu/description .

Contact: Dr. June Wolfe, 254-774-6016, jwolfe@brc.tamus.edu

Dr. June Wolfe | EurekAlert!
Further information:
http://www.tamus.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>